Spelling suggestions: "subject:"automatic summarized"" "subject:"automatic summarize""
1 |
Um estudo comparativo de modelos baseados em estatísticas textuais, grafos e aprendizado de máquina para sumarização automática de textos em portuguêsLeite, Daniel Saraiva 21 December 2010 (has links)
Made available in DSpace on 2016-06-02T19:05:48Z (GMT). No. of bitstreams: 1
3512.pdf: 1897835 bytes, checksum: 598f309a846cb201fe8f13be0f2e37da (MD5)
Previous issue date: 2010-12-21 / Automatic text summarization has been of great interest in Natural Language Processing due to the need of processing a huge amount of information in short time, which is usually delivered through distinct media. Thus, large-scale methods are of utmost importance for synthesizing and making access to information simpler. They aim at preserving relevant content of the sources with little or no human intervention. Building upon the extractive summarizer SuPor and focusing on texts in Portuguese, this MsC work aimed at exploring varied features for automatic summarization. Computational methods especially driven towards textual statistics, graphs and machine learning have been explored. A meaningful extension of the SuPor system has resulted from applying such methods and new summarization models have thus been delineated. These are based either on each of the three methodologies in isolation, or are hybrid. In this dissertation, they are generically named after the original SuPor as SuPor-2. All of them have been assessed by comparing them with each other or with other, well-known, automatic summarizers for texts in Portuguese. The intrinsic evaluation tasks have been carried out entirely automatically, aiming at the informativeness of the outputs, i.e., the automatic extracts. They have also been compared with other well-known automatic summarizers for Portuguese. SuPor-2 results show a meaningful improvement of some SuPor-2 variations. The most promising models may thus be made available in the future, for generic use. They may also be embedded as tools for varied Natural Language Processing purposes. They may even be useful for other related tasks, such as linguistic studies. Portability to other languages is possible by replacing the resources that are language-dependent, namely, lexicons, part-of-speech taggers and stop words lists. Models that are supervised have been so far trained on news corpora. In spite of that, training for other genres may be carried out by interested users using the very same interfaces supplied by the systems. / A tarefa de Sumarização Automática de textos tem sido de grande importância dentro da área de Processamento de Linguagem Natural devido à necessidade de se processar gigantescos volumes de informação disponibilizados nos diversos meios de comunicação. Assim, mecanismos em larga escala para sintetizar e facilitar o acesso a essas informações são de extrema importância. Esses mecanismos visam à preservação do conteúdo mais relevante e com pouca ou nenhuma intervenção humana. Partindo do sumarizador extrativo SuPor e contemplando o Português, este trabalho de mestrado visou explorar variadas características de sumarização pela utilização de métodos computacionais baseados em estatísticas textuais, grafos e aprendizado de máquina. Esta exploração consistiu de uma extensão significativa do SuPor, pela definição de novos modelos baseados nessas três abordagens de forma individual ou híbrida. Por serem originários desse sistema, manteve-se a relação com seu nome, o que resultou na denominação genérica SuPor-2. Os diversos modelos propostos foram, então, comparados entre si em diversos experimentos, avaliando-se intrínseca e automaticamente a informatividade dos extratos produzidos. Foram realizadas também comparações com outros sistemas conhecidos para o Português. Os resultados obtidos evidenciam uma melhora expressiva de algumas variações do SuPor-2 em relação aos demais sumarizadores extrativos existentes para o Português. Os sistemas que se evidenciaram superiores podem ser disponibilizados no futuro para utilização geral por usuários comuns ou ainda para utilização como ferramentas em outras tarefas do Processamento de Língua Natural ou em áreas relacionadas. A portabilidade para outras línguas é possível com a substituição dos recursos dependentes de língua, como léxico, etiquetadores morfossintáticos e stoplist Os modelos supervisionados foram treinados com textos jornalísticos até o momento. O treino para outros gêneros pode ser feito pelos usuários interessados através dos próprios sistemas desenvolvidos
|
2 |
Automation of summarization evaluation methods and their application to the summarization processNahnsen, Thade January 2011 (has links)
Summarization is the process of creating a more compact textual representation of a document or a collection of documents. In view of the vast increase in electronically available information sources in the last decade, filters such as automatically generated summaries are becoming ever more important to facilitate the efficient acquisition and use of required information. Different methods using natural language processing (NLP) techniques are being used to this end. One of the shallowest approaches is the clustering of available documents and the representation of the resulting clusters by one of the documents; an example of this approach is the Google News website. It is also possible to augment the clustering of documents with a summarization process, which would result in a more balanced representation of the information in the cluster, NewsBlaster being an example. However, while some systems are already available on the web, summarization is still considered a difficult problem in the NLP community. One of the major problems hampering the development of proficient summarization systems is the evaluation of the (true) quality of system-generated summaries. This is exemplified by the fact that the current state-of-the-art evaluation method to assess the information content of summaries, the Pyramid evaluation scheme, is a manual procedure. In this light, this thesis has three main objectives. 1. The development of a fully automated evaluation method. The proposed scheme is rooted in the ideas underlying the Pyramid evaluation scheme and makes use of deep syntactic information and lexical semantics. Its performance improves notably on previous automated evaluation methods. 2. The development of an automatic summarization system which draws on the conceptual idea of the Pyramid evaluation scheme and the techniques developed for the proposed evaluation system. The approach features the algorithm for determining the pyramid and bases importance on the number of occurrences of the variable-sized contributors of the pyramid as opposed to word-based methods exploited elsewhere. 3. The development of a text coherence component that can be used for obtaining the best ordering of the sentences in a summary.
|
3 |
Exploração de métodos de sumarização automática multidocumento com base em conhecimento semântico-discursivo / Exploration of automatic methods for multi-document summarization using discourse modelsCardoso, Paula Christina Figueira 05 September 2014 (has links)
A sumarização automática multidocumento visa à produção de um sumário a partir de um conjunto de textos relacionados, para ser utilizado por um usuário particular e/ou para determinada tarefa. Com o crescimento exponencial das informações disponíveis e a necessidade das pessoas obterem a informação em um curto espaço de tempo, a tarefa de sumarização automática tem recebido muita atenção nos últimos tempos. Sabe-se que em um conjunto de textos relacionados existem informações redundantes, contraditórias e complementares, que representam os fenômenos multidocumento. Em cada texto-fonte, o assunto principal é descrito em uma sequência de subtópicos. Além disso, as sentenças de um texto-fonte possuem graus de relevância diferentes. Nesse contexto, espera-se que um sumário multidocumento consista das informações relevantes que representem o total de textos do conjunto. No entanto, as estratégias de sumarização automática multidocumento adotadas até o presente utilizam somente os relacionamentos entre textos e descartam a análise da estrutura textual de cada texto-fonte, resultando em sumários que são pouco representativos dos subtópicos textuais e menos informativos do que poderiam ser. A fim de tratar adequadamente a relevância das informações, os fenômenos multidocumento e a distribuição de subtópicos, neste trabalho de doutorado, investigou-se como modelar o processo de sumarização automática usando o conhecimento semântico-discursivo em métodos de seleção de conteúdo e o impacto disso para a produção de sumários mais informativos e representativos dos textos-fonte. Na formalização do conhecimento semântico-discursivo, foram utilizadas as teorias semântico-discursivas RST (Rhetorical Structure Theory) e CST (Cross-document Structure Theory). Para apoiar o trabalho, um córpus multidocumento foi anotado com RST e subtópicos, consistindo em um recurso disponível para outras pesquisas. A partir da análise de córpus, foram propostos 10 métodos de segmentação em subtópicos e 13 métodos inovadores de sumarização automática. A avaliação dos métodos de segmentação em subtópicos mostrou que existe uma forte relação entre a estrutura de subtópicos e a análise retórica de um texto. Quanto à avaliação dos métodos de sumarização automática, os resultados indicam que o uso do conhecimento semântico-discursivo em boas estratégias de seleção de conteúdo afeta positivamente a produção de sumários informativos. / The multi-document summarization aims at producing a summary from a set of related texts to be used for an individual or/and a particular task. Nowadays, with the exponential growth of available information and the peoples need to obtain information in a short time, the task of automatic summarization has received wide attention. It is known that in a set of related texts there are pieces of redundant, contradictory and complementary information that represent the multi-document phenomenon. In each source text, the main subject is described in a sequence of subtopics. Furthermore, some sentences in the same text are more relevant than others. Considering this context, it is expected that a multi-document summary consists of relevant information that represents a set of texts. However, strategies for automatic multi-document summarization adopted until now have used only the relationships between texts and dismissed the analysis of textual structure of each source text, resulting in summaries that are less representative of subtopics and less informative than they could be. In order to properly treat the relevance of information, multi-document phenomena and distribution of subtopics, in this thesis, we investigated how to model the summarization process using the semantic-discursive knowledge and its impact for producing more informative and representative summaries from source texts. In order to formalize the semantic-discursive knowledge, we adopted RST (Rhetorical Structure Theory) and CST (Cross-document Structure Theory) theories. To support the work, a multi-document corpus was annotated with RST and subtopics, consisting of a new resource available for other researchers. From the corpus analysis, 10 methods for subtopic segmentation and 13 orignal methods for automatic summarization were proposed. The assessment of methods for subtopic segmentation showed that there is a strong relationship between the subtopics structure and the rhetorical analysis of a text. In regards to the assessment of the methods for automatic summarization, the results indicate that the use of semantic-discursive knowledge in good strategies for content selection affects positively the production of informative summaries.
|
4 |
Modelagem de discurso para o tratamento da concisão e preservação da idéia central na geração de textos / Discourse modeling for conciseness and gist preservation in text generationRino, Lucia Helena Machado 26 April 1996 (has links)
O foco deste trabalho esta, no processo automático de condensação de uma estrutura complexa de informação e de sua estruturação, para fazê-la apropriada para a expressão textual. A tese principal é que, sem um modelo de discurso, não podemos assegurar a preservação de uma idéia central, pois o processamento do discurso envolve não só a informação, como também metas comunicativas e critérios para ressaltar unidades de informação. Como resultado os métodos para produzir uma estrutura coerente de discurso de um sumário agregam tanto metas comunicativas quanto informações sobre o inter-relacionamentos entre as unidades de informação permitindo a organização do discurso com base em restrições progressivas de planejamento. Esse argumento tem duas implicações: a preservação da idéia central deve ser garantida em nível profundo de processamento e sua proeminência deve ser subordinada aos aspectos comunicativos e retóricos. Portanto, esta investigação se baseia em perspectivas intencionais e retóricas. Propomos um modelo de sumarização dirigido por objetivos, cuja função principal é mapear intenções em relações de coerência, observando ainda a dependência semântica indicada pela estrutura complexa de informação. As estruturas de discurso resultantes devem enfatizar a proposição central a veicular no discurso. Em termos teóricos, o aspecto inovador do modelo está na associação de relações de discurso em três níveis distintos de representação: intencionalidade. coerência e semântica. Em termos práticos, a solução proposta sugere o projeto de um planejador de textos que pode tornar a proposição central de um discurso a informação mais proeminente em uma estrutura de discurso e, assim, assegurar a preservação da idéia central durante a condensação de uma estrutura complexa de informação. Os resultados experimentais da aplicação desse modelo demonstram que é possível selecionar a informação relevante, distinguindo as unidades de conteúdo da estrutura original que são supérfluas ou complementares para a proposição central, e organizá-la coerentemente com o intuito de alcançar um objetivo comunicativo. Propomos a incorporação do modelo a um sumarizador automático cuja arquitetura é sugerida neste trabalho. / The focus of this work is on the automatic process of condensing a. complex information structure and structuring it in such a way as to make it appropriate for textual expression. The main thesis is that without a sound discourse model we cannot guarantee gist preservation because discourse processing comprises not only information, but also communicative goals and criteria to emphasize units of information. As a result, the methods to produce a coherent discourse structure of a summary aggregate both communicative goals and the inter-relationships between information units, allowing for discourse organization by progressively constraining planning decisions. Our thrust has two implications, namely that gist preservation must be guaranteed at the deep level of processing and gist proeminence must be subordinated to communicative and rhetorical settings. The current investigation thus relies on intentional and rhetorical perspectives. A goal-driven summarization model is proposed, whose main function is to map intentions onto coherence relations whilst still observing the semantic dependency indicated by the complex input structure. The resulting discourse structures must highlight the central proposition to be conveyed. In theoretical terms, the innovative contribution of the model relies on the association of discourse relations at three different levels of representation - the intentionality, coherence and semantics. In practical terms, the proposed solution allows for the design of a text planner that can make the central proposition of a discourse the most proeminent information in a discourse structure, thus ensuring the preservation of gist during the condensation of a complex information structure. The results of applying this model show that it is possible to both select relevant information by differentiating content units of the input structure that are superfluous or complementary to the central proposition and organize it coherently by aiming at achieving a communicative goal. The model is proposed to incorporate into an automatic summariser whose architecture suggested in this thesis.
|
5 |
Improving Search Results with Automated Summarization and Sentence ClusteringCotter, Steven 23 March 2012 (has links)
Have you ever searched for something on the web and been overloaded with irrelevant results? Many search engines tend to cast a very wide net and rely on ranking to show you the relevant results first. But, this doesn't always work. Perhaps the occurrence of irrelevant results could be reduced if we could eliminate the unimportant content from each webpage while indexing. Instead of casting a wide net, maybe we can make the net smarter. Here, I investigate the feasibility of using automated document summarization and clustering to do just that. The results indicate that such methods can make search engines more precise, more efficient, and faster, but not without costs. / McAnulty College and Graduate School of Liberal Arts / Computational Mathematics / MS / Thesis
|
6 |
Modelagem de discurso para o tratamento da concisão e preservação da idéia central na geração de textos / Discourse modeling for conciseness and gist preservation in text generationLucia Helena Machado Rino 26 April 1996 (has links)
O foco deste trabalho esta, no processo automático de condensação de uma estrutura complexa de informação e de sua estruturação, para fazê-la apropriada para a expressão textual. A tese principal é que, sem um modelo de discurso, não podemos assegurar a preservação de uma idéia central, pois o processamento do discurso envolve não só a informação, como também metas comunicativas e critérios para ressaltar unidades de informação. Como resultado os métodos para produzir uma estrutura coerente de discurso de um sumário agregam tanto metas comunicativas quanto informações sobre o inter-relacionamentos entre as unidades de informação permitindo a organização do discurso com base em restrições progressivas de planejamento. Esse argumento tem duas implicações: a preservação da idéia central deve ser garantida em nível profundo de processamento e sua proeminência deve ser subordinada aos aspectos comunicativos e retóricos. Portanto, esta investigação se baseia em perspectivas intencionais e retóricas. Propomos um modelo de sumarização dirigido por objetivos, cuja função principal é mapear intenções em relações de coerência, observando ainda a dependência semântica indicada pela estrutura complexa de informação. As estruturas de discurso resultantes devem enfatizar a proposição central a veicular no discurso. Em termos teóricos, o aspecto inovador do modelo está na associação de relações de discurso em três níveis distintos de representação: intencionalidade. coerência e semântica. Em termos práticos, a solução proposta sugere o projeto de um planejador de textos que pode tornar a proposição central de um discurso a informação mais proeminente em uma estrutura de discurso e, assim, assegurar a preservação da idéia central durante a condensação de uma estrutura complexa de informação. Os resultados experimentais da aplicação desse modelo demonstram que é possível selecionar a informação relevante, distinguindo as unidades de conteúdo da estrutura original que são supérfluas ou complementares para a proposição central, e organizá-la coerentemente com o intuito de alcançar um objetivo comunicativo. Propomos a incorporação do modelo a um sumarizador automático cuja arquitetura é sugerida neste trabalho. / The focus of this work is on the automatic process of condensing a. complex information structure and structuring it in such a way as to make it appropriate for textual expression. The main thesis is that without a sound discourse model we cannot guarantee gist preservation because discourse processing comprises not only information, but also communicative goals and criteria to emphasize units of information. As a result, the methods to produce a coherent discourse structure of a summary aggregate both communicative goals and the inter-relationships between information units, allowing for discourse organization by progressively constraining planning decisions. Our thrust has two implications, namely that gist preservation must be guaranteed at the deep level of processing and gist proeminence must be subordinated to communicative and rhetorical settings. The current investigation thus relies on intentional and rhetorical perspectives. A goal-driven summarization model is proposed, whose main function is to map intentions onto coherence relations whilst still observing the semantic dependency indicated by the complex input structure. The resulting discourse structures must highlight the central proposition to be conveyed. In theoretical terms, the innovative contribution of the model relies on the association of discourse relations at three different levels of representation - the intentionality, coherence and semantics. In practical terms, the proposed solution allows for the design of a text planner that can make the central proposition of a discourse the most proeminent information in a discourse structure, thus ensuring the preservation of gist during the condensation of a complex information structure. The results of applying this model show that it is possible to both select relevant information by differentiating content units of the input structure that are superfluous or complementary to the central proposition and organize it coherently by aiming at achieving a communicative goal. The model is proposed to incorporate into an automatic summariser whose architecture suggested in this thesis.
|
7 |
Exploração de métodos de sumarização automática multidocumento com base em conhecimento semântico-discursivo / Exploration of automatic methods for multi-document summarization using discourse modelsPaula Christina Figueira Cardoso 05 September 2014 (has links)
A sumarização automática multidocumento visa à produção de um sumário a partir de um conjunto de textos relacionados, para ser utilizado por um usuário particular e/ou para determinada tarefa. Com o crescimento exponencial das informações disponíveis e a necessidade das pessoas obterem a informação em um curto espaço de tempo, a tarefa de sumarização automática tem recebido muita atenção nos últimos tempos. Sabe-se que em um conjunto de textos relacionados existem informações redundantes, contraditórias e complementares, que representam os fenômenos multidocumento. Em cada texto-fonte, o assunto principal é descrito em uma sequência de subtópicos. Além disso, as sentenças de um texto-fonte possuem graus de relevância diferentes. Nesse contexto, espera-se que um sumário multidocumento consista das informações relevantes que representem o total de textos do conjunto. No entanto, as estratégias de sumarização automática multidocumento adotadas até o presente utilizam somente os relacionamentos entre textos e descartam a análise da estrutura textual de cada texto-fonte, resultando em sumários que são pouco representativos dos subtópicos textuais e menos informativos do que poderiam ser. A fim de tratar adequadamente a relevância das informações, os fenômenos multidocumento e a distribuição de subtópicos, neste trabalho de doutorado, investigou-se como modelar o processo de sumarização automática usando o conhecimento semântico-discursivo em métodos de seleção de conteúdo e o impacto disso para a produção de sumários mais informativos e representativos dos textos-fonte. Na formalização do conhecimento semântico-discursivo, foram utilizadas as teorias semântico-discursivas RST (Rhetorical Structure Theory) e CST (Cross-document Structure Theory). Para apoiar o trabalho, um córpus multidocumento foi anotado com RST e subtópicos, consistindo em um recurso disponível para outras pesquisas. A partir da análise de córpus, foram propostos 10 métodos de segmentação em subtópicos e 13 métodos inovadores de sumarização automática. A avaliação dos métodos de segmentação em subtópicos mostrou que existe uma forte relação entre a estrutura de subtópicos e a análise retórica de um texto. Quanto à avaliação dos métodos de sumarização automática, os resultados indicam que o uso do conhecimento semântico-discursivo em boas estratégias de seleção de conteúdo afeta positivamente a produção de sumários informativos. / The multi-document summarization aims at producing a summary from a set of related texts to be used for an individual or/and a particular task. Nowadays, with the exponential growth of available information and the peoples need to obtain information in a short time, the task of automatic summarization has received wide attention. It is known that in a set of related texts there are pieces of redundant, contradictory and complementary information that represent the multi-document phenomenon. In each source text, the main subject is described in a sequence of subtopics. Furthermore, some sentences in the same text are more relevant than others. Considering this context, it is expected that a multi-document summary consists of relevant information that represents a set of texts. However, strategies for automatic multi-document summarization adopted until now have used only the relationships between texts and dismissed the analysis of textual structure of each source text, resulting in summaries that are less representative of subtopics and less informative than they could be. In order to properly treat the relevance of information, multi-document phenomena and distribution of subtopics, in this thesis, we investigated how to model the summarization process using the semantic-discursive knowledge and its impact for producing more informative and representative summaries from source texts. In order to formalize the semantic-discursive knowledge, we adopted RST (Rhetorical Structure Theory) and CST (Cross-document Structure Theory) theories. To support the work, a multi-document corpus was annotated with RST and subtopics, consisting of a new resource available for other researchers. From the corpus analysis, 10 methods for subtopic segmentation and 13 orignal methods for automatic summarization were proposed. The assessment of methods for subtopic segmentation showed that there is a strong relationship between the subtopics structure and the rhetorical analysis of a text. In regards to the assessment of the methods for automatic summarization, the results indicate that the use of semantic-discursive knowledge in good strategies for content selection affects positively the production of informative summaries.
|
8 |
Using semantic folding with TextRank for automatic summarization / Semantisk vikning med TextRank för automatisk sammanfattningKarlsson, Simon January 2017 (has links)
This master thesis deals with automatic summarization of text and how semantic folding can be used as a similarity measure between sentences in the TextRank algorithm. The method was implemented and compared with two common similarity measures. These two similarity measures were cosine similarity of tf-idf vectors and the number of overlapping terms in two sentences. The three methods were implemented and the linguistic features used in the construction were stop words, part-of-speech filtering and stemming. Five different part-of-speech filters were used, with different mixtures of nouns, verbs, and adjectives. The three methods were evaluated by summarizing documents from the Document Understanding Conference and comparing them to gold-standard summarization created by human judges. Comparison between the system summaries and gold-standard summaries was made with the ROUGE-1 measure. The algorithm with semantic folding performed worst of the three methods, but only 0.0096 worse in F-score than cosine similarity of tf-idf vectors that performed best. For semantic folding, the average precision was 46.2% and recall 45.7% for the best-performing part-of-speech filter. / Det här examensarbetet behandlar automatisk textsammanfattning och hur semantisk vikning kan användas som likhetsmått mellan meningar i algoritmen TextRank. Metoden implementerades och jämfördes med två vanliga likhetsmått. Dessa två likhetsmått var cosinus-likhet mellan tf-idf-vektorer samt antal överlappande termer i två meningar. De tre metoderna implementerades och de lingvistiska särdragen som användes vid konstruktionen var stoppord, filtrering av ordklasser samt en avstämmare. Fem olika filter för ordklasser användes, med olika blandningar av substantiv, verb och adjektiv. De tre metoderna utvärderades genom att sammanfatta dokument från DUC och jämföra dessa mot guldsammanfattningar skapade av mänskliga domare. Jämförelse mellan systemsammanfattningar och guldsammanfattningar gjordes med måttet ROUGE-1. Algoritmen med semantisk vikning presterade sämst av de tre jämförda metoderna, dock bara 0.0096 sämre i F-score än cosinus-likhet mellan tf-idf-vektorer som presterade bäst. För semantisk vikning var den genomsnittliga precisionen 46.2% och recall 45.7% för det ordklassfiltret som presterade bäst.
|
9 |
Extracting Opinions from Blog Comments: Analysis, Design and ApplicationsRaghavan, Preethi January 2009 (has links)
No description available.
|
10 |
Système symbolique de création de résumés de mise à jourGenest, Pierre-Étienne January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
Page generated in 0.1725 seconds