Spelling suggestions: "subject:"automobiles, cacing -- clynamics."" "subject:"automobiles, cacing -- ctynamics.""
1 |
A study of inverted wings with endplates in ground effectRicapito, David, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2007 (has links)
An inverted wing with various endplate configurations was investigated at two different angles of incidence. A moving ground was designed and constructed for use in the UNSW T1 wind tunnel. The test cases were investigated in ground effect using the moving ground. Measurements and observations were obtained using laser sheet flow visualisation and laser doppler anemometry. Computational fluid dynamics models of the test cases were run to gain further understanding of the flow field generated when using inverted wings with endplates. The computational fluid dynamics models correlated well to the experimental results.
|
2 |
A study of inverted wings with endplates in ground effectRicapito, David, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2007 (has links)
An inverted wing with various endplate configurations was investigated at two different angles of incidence. A moving ground was designed and constructed for use in the UNSW T1 wind tunnel. The test cases were investigated in ground effect using the moving ground. Measurements and observations were obtained using laser sheet flow visualisation and laser doppler anemometry. Computational fluid dynamics models of the test cases were run to gain further understanding of the flow field generated when using inverted wings with endplates. The computational fluid dynamics models correlated well to the experimental results.
|
3 |
Vehicle dynamic validation and analysis from suspension forcesMurray, William S. (William Scott) 21 March 2012 (has links)
Several standardized courses for Formula SAE (FSAE) testing are introduced and
described with sufficient detail to be reproduced by any Formula SAE team. Basic
analysis methods for the courses are given as well as explanations of how those
analyses could be used. On-car data from the Global Formula Racing (GFR) SAE
cars is used to verify the analysis methods, give estimates to unknown variables, and
show the relevance of the standard testing courses. Using the courses and methods
described in this paper should allow standardized comparison of FSAE car
performance, as well as provide a method to verify simulations and evaluate changes
in vehicle performance from tuning.
Instrumentation of all suspension member forces with strain gauge load cells is
shown to be an extremely powerful tool for measuring vehicle performance and
quantifying vehicle dynamic characteristics. The design and implementation of strain
gauge load cells is described in detail to provide a template for reproducing similar
results in other vehicles. Data from the GFR 2011 FSAE car is used throughout the
paper to: show the design process for making effective suspension member load
cells, show the calibration processes necessary to ensure quality data is collected,
illustrate the calculation of suspension corner forces, and show the effectiveness of
measuring vehicle dynamic characteristics with this technique. Using the methods
described in this paper should provide data that allows a more complete and
thorough understanding of on-car vehicle dynamics. This data may be used to
validate vehicle models. / Graduation date: 2012
|
Page generated in 0.0636 seconds