• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantification of volatile compounds in degraded engine oil

Sepcic, Kelly Hall 01 December 2003 (has links)
No description available.
2

Operational characteristics of an internal combustion engine using mixtures of gasoline and propane as the fuel

Williams, Walter Conley January 2011 (has links)
Digitized by Kansas Correctional Industries
3

The effect of fuel formulation on the exhaust emissions of spark ignition engines

Bell, Arthur 03 1900 (has links)
Thesis (PhD (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2006. / The research described in this dissertation examined the effects that fuel formulation can have on the regulated exhaust emissions produced by spark ignition engines in a South African context. Typical South African engine technology, and fuels representative of available fuels were investigated. To broaden the scope and provide information on as many fuel parameters as possible, fuel formulations other than typical retail fuels were also investigated. In order to gain insight into the mechanisms taking place, combustion analysis was performed on measured cylinder pressure traces
4

System design and energy management strategy for hybrid electric vehicles

黃毓琛, Wong, Yuk-sum. January 2008 (has links)
published_or_final_version / abstract / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
5

Analysis of fuel consumption reduction potential through the use of an electrically driven air conditioning compressor

Marais, Charel January 2007 (has links)
The disturbing current situation regarding the world climate has initiated a major wave of urgent developments towards decreasing the overall impact of human activities on the living environment. A major role player in this development is the automobile industry that is inherently connected to pollution of various types, be it air, water or noise pollution. There have been drastic changes not only in the technologies employed in producing vehicles and components, but also in the construction and technologies built into modern automobiles to lessen the overall environmental impact of the industry. Noxious emissions have been decreased, overall efficiencies increased and vehicles are becoming more economical with each new generation. Stricter laws dictate that the level of acceptable vehicle emissions is to be decreased ever further and all manufacturers are developing various possibilities to achieve this. With the emergence of hybrid vehicle technology, there was also a sudden development of different electrical systems that were made viable by the higher onboard voltage systems employed in hybrid vehicles. One of these developments was the electrical air conditioning compressor for use in automobile applications. Although it is designed to operate with a higher voltage than the traditional 12V onboard vehicle systems, it is theoretically possible to incorporate it into a 12V system by making use of a DC-DC converter to step up the supply voltage of the electrical compressor sufficiently to allow for its successful operation. The question therefore arises whether it would be feasible and sensible to employ an electrical air conditioning system in conventional combustion engine vehicles from an overall fuel consumption and vehicle emissions point of view. A modelling approach was taken where an overall vehicle driving simulation was created to represent an average modern production vehicle. The simulation was then extended to include the options of incorporating models for both mechanically and electrically driven air conditioning systems. This provides insight into the influences of the air conditioning system on the vehicle’s overall fuel consumption and an opportunity to compare the influences from the two different systems. This study attempted to provide answers to some of the viability questions regarding the incorporation of electrically driven air conditioning systems into vehicles that use standard 12V onboard voltage systems. It was found that the electrical system has definite potential as a viable replacement option for the conventional system should it be combined with an appropriate alternator and equipped with an efficient control system.

Page generated in 0.0917 seconds