• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adaptive Control of Systems in Cascade with Saturation

Kannan, Suresh Kumar 28 November 2005 (has links)
This thesis extends the use of neural-network-based model reference adaptive control to systems that occur as cascades. In general, these systems are not feedback linearizable. The approach taken is that of approximate feedback linearization of upper subsystems whilst treating the lower-subsystem states as virtual actuators. Similarly, lower-subsystems are also feedback linearized. Typically, approximate inverses are used for linearization purposes. Model error arising from the use of an approximate inverse is minimized using a neural-network as an adaptive element. Incorrect adaptation due to (virtual) actuator saturation and dynamics is avoided using the Pseudocontrol Hedging method. Using linear approximate inverses and linear reference models generally result in large desired pseudocontrol for large external commands. Even if the provided external command is feasible (null-controllable), there is no guarantee that the reference model trajectory is feasible. In order to mitigate this, nonlinear reference models based on nested-saturation methods are used to constrain the evolution of the reference model and thus the plant states. The method presented in this thesis lends itself to the inner-outer loop control of air vehicles, where the inner-loop controls attitude dynamics and the outer-loop controls the translational dynamics of the vehicle. The outer-loop treats the closed loop attitude dynamics as an actuator. Adaptation to uncertainty in the attitude, as well as the translational dynamics, is introduced, thus minimizing the effects of model error in all six degrees of freedom and leading to more accurate position tracking. A pole-placement approach is used to choose compensator gains for the tracking error dynamics. This alleviates timescale separation requirements, allowing the outer loop bandwidth to be closer to that of the inner loop, thus increasing position tracking performance. A poor model of the attitude dynamics and a basic kinematics model is shown to be sufficient for accurate position tracking. In particular, the inner-outer loop method was used to control an unmanned helicopter and has subsequently been applied to a ducted-fan, a fixed-wing aircraft that transitions in and out of hover, and a full-scale rotorcraft. Experimental flight test results are also provided for a subset of these vehicles.
2

The design, implementation of a moving platform landing algorithm for an unmanned autonomous helicopter

Bellstedt, Philip 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: With a view to future ship deck landings, a moving platform landing algorithm for an unmanned autonomous helicopter was successfully designed and a number of systems were developed in order to implement the landing algorithm. Through a combination of an MCA-based ship motion prediction algorithm and the appropriate analysis of platform motion criteria, a system was developed which can identify valid landing opportunities in real ship motion data recorded at sea state 4 for up to 5 s into the future with a 75% success rate. The bandwidth of the heave motion estimator and controller of the helicopter were increased by the implementation of GPS latency compensation, and velocity and acceleration feed forward terms respectively. The resulting bandwidth of at least 0.2 Hz is sufficient to track the heave motion of a platform which is simulating the motion of a ship at sea state 4 or lower. After the various systems were integrated they were coordinated in a landing state machine. A stationary platform landing was demonstrated successfully during flight tests, verifying the functionality of the landing state machine and the integration of the system. Landings on a platform simulating the motion of a ship at sea state 4 were demonstrated successfully in hardware-in-the-loop simulations. / AFRIKAANSE OPSOMMING: Met die oog op toekomstige skip dek landings, is 'n bewegende platformlandingsalgoritme vir 'n onbemande outonome helikopter suksesvol ontwerp en 'n aantal stelsels ontwikkel om die landingsalgoritme te implementeer. Deur 'n kombinasie van 'n MCA-gebaseerde skipbewegingvoorspellingsalgoritme en die toepaslike ontleding van platformbewegingkriteria, is 'n stelsel ontwikkel wat geldige landingsgeleenthede in realeskipbewegingsdata kan identifiseer. Vir skipbewegingsdata wat by seetoestand 4 opgeneem is kan landingsgeleenthede 5 s in die toekoms met ‘n 75% sekerheid identifiseer word. Die bandwydte van die afgeebewegingafskatter en beheerder van die helikopter is deur die implementering van GPS vertragingkompensasie, en snelheid en versnelling vorentoe-voer terme onderskeidelik verhoog. Die gevolglike bandwydte van minstens 0.2 Hz is voldoende om die afgeebeweging van 'n platform te volg wat die beweging van 'n skip by seetoestand 4 of laer simuleer. Nadat die stelsels geïntegreer is is hulle gekoördineer in 'n landingtoestandsmasjien. 'n Stilstaande platform landing is suksesvol gedemonstreer tydens vlugtoetse, wat die funksionaliteit van die landingtoestandsmasjien en die integrasie van die stelsel bewys. Landings op 'n platform wat die beweging van 'n skip by seetoestand 4 simuleer is suksesvol in hardeware-in-die-lus simulasies gedemonstreer.
3

The design and implementation of vision-based autonomous rotorcraft landing

De Jager, Andries Matthys 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2011. / ENGLISH ABSTRACT: This thesis presents the design and implementation of all the subsystems required to perform precision autonomous helicopter landings within a low-cost framework. To obtain high-accuracy state estimates during the landing phase a vision-based approach, with a downwards facing camera on the helicopter and a known landing target, was used. An e cient monocular-view pose estimation algorithm was developed to determine the helicopter's relative position and attitude during the landing phase. This algorithm was analysed and compared to existing algorithms in terms of sensitivity, robustness and runtime. An augmented kinematic state estimator was developed to combine measurements from low-cost GPS and inertial measurement units with the high accuracy measurements from the camera system. High-level guidance algorithms, capable of performing waypoint navigation and autonomous landings, were developed. A visual position and attitude measurement (VPAM) node was designed and built to perform the pose estimation and execute the associated algorithms. To increase the node's throughput, a compression scheme is used between the image sensor and the processor to reduce the amount of data that needs to be processed. This reduces processing requirements and allows the entire system to remain on-board with no reliance on radio links. The functionality of the VPAM node was con rmed through a number of practical tests. The node is able to provide measurements of su cient accuracy for the subsequent systems in the autonomous landing system. The functionality of the full system was con rmed in a software environment, as well as through testing using a visually augmented hardware-in-the-loop environment. / AFRIKAANSE OPSOMMING: Hierdie tesis beskryf die ontwikkeling van die substelsels wat vir akkurate outonome helikopter landings benodig word. 'n Onderliggende doel was om al die ontwikkeling binne 'n lae-koste raamwerk te voltooi. Hoe-akkuraatheid toestande word benodig om akkurate landings te verseker. Hierdie metings is verkry deur middel van 'n optiese stelsel, bestaande uit 'n kamera gemonteer op die helikopter en 'n bekende landingsteiken, te ontwikkel. 'n Doeltreffende mono-visie posisie-en-orientasie algoritme is ontwikkel om die helikopter se posisie en orientasie, relatief tot die landingsteiken, te bepaal. Hierdie algoritme is deeglik ondersoek en vergelyk met bestaande algoritmes in terme van sensitiwiteit, robuustheid en uitvoertyd. 'n Optimale kinematiese toestandswaarnemer, wat metings van GPS en inersiele sensore kombineer met die metings van die optiese stelsel, is ontwikkel en deur simulasie bevestig. Hoe-vlak leidingsalgoritmes is ontwikkel wat die helikopter in staat stel om punt-tot-punt navigasie en die landingsprosedure uit te voer. 'n Visuele posisie-en-orientasie meetnodus is ontwikkel om die mono-visie posisie-en orientasie algoritmes uit te voer. Om die deurset te verhoog is 'n saampersingsalgoritme gebruik wat die hoeveelheid data wat verwerk moet word, te verminder. Dit het die benodigde verwerkingskrag verminder, wat verseker het dat alle verwerking op aanboord stelsels kan geskied. Die meetnodus en mono-visie algoritmes is deur middel van praktiese toetse bevestig en is in staat om metings van voldoende akkuraatheid aan die outonome landingstelsel te verskaf. Die werking van die volledige stelsel is, deur simulasies in 'n sagteware en hardeware-indie- lus omgewing, bevestig.

Page generated in 0.0891 seconds