Spelling suggestions: "subject:"autoskalning"" "subject:"utskalning""
1 |
Performance Evaluation of Kubernetes Autoscaling strategies on GKE clusters / Prestandautverdering av autoskalningsstrategier på GKE-klusterNilsen, Johanna January 2023 (has links)
Cloud computing and containerisation have experienced significant growth in recent years. With cloud providers requiring users to specify resource limits and requests, the need for performance and resource optimisation has emerged in the cloud computing domain. This thesis focuses on examining three autoscaling approaches in the Kubernetes container orchestrator: Hybrid Pod Autoscaler, Vertical Pod Autoscaler (VPA), and Horizontal Pod Autoscaler (HPA). To conduct the analysis, a production-grade microservice was deployed on a GKE cluster, replicating the workload of the host company Nordnet Bank AB, a pan-Nordic platform for savings investments. The main objective was to investigate the impact of the different autoscalers on the 50th and 99th percentile response times. The study also aimed to investigate whether a hybrid pod autoscaler, combining VPA and HPA, could outperform HPA and VPA in terms of response time and CPU usage. Additionally, the study aimed to identify the service metrics that an orchestrator can use to achieve response times similar to those obtained when resources are over-provisioned. The research findings indicate that response times varied significantly depending on the autoscaling strategy. While the 50th percentile response times remained consistent, the 99th percentile exhibited greater variation. Among the strategies, HPA demonstrated consistent performance, albeit with greater variability in the 99th percentile response times. The VPA strategy, in contrast, resulted in higher response times for both the 50th and 99th percentile compared to the baseline. The hybrid approach generally outperformed VPA in terms of response times while showing comparable performance to HPA, although with slightly greater variability. CPU usage patterns of the hybrid approach were more closely aligned with HPA than VPA. CPU usage and request rate were effectively used as service metrics for orchestrators in achieving acceptable 99th percentile response times, as demonstrated by both HPA and the hybrid approach. Nevertheless, these findings are contingent on the specific autoscaler configuration, microservice, and workload model used in this study and may not be universally applicable. / Cloud computing och containerisering har under de senaste åren haft en betydande tillväxt. I och med att molnleverantörer ger användare möjlighet att själva specificera resursgränser, har behovet för prestanda- och resursoptimering inom molntjänster blivit alltmer framträdande. Denna forskning fokuserar på att undersöka och utvärdera tre olika autoskalningsmetoder i Kubernetes containerorkestrator: Hybrid Pod Autoscaler, Vertical Pod Autoscaler (VPA) och Horizontal Pod Autoscaler (HPA).För att genomföra utvärderingen implementerades tre mikrotjänster i en GKE-klustermiljö. Arbetsbelastningen hos den svenska banken och handelsplattformen Nordnet Bank AB replikerades. Det primära syftet med studien var att undersöka hur de olika autoskalningsmetoderna påverkade svarstiden i den 50:e och 99:e percentilen. Utöver detta, syftade också till att undersöka om en hybrid pod autoscaler, som kombinerar både VPA och HPA, kunde överträffa de enskilda metoderna i svarstid och CPU-användning. Dessutom identifiera vilka mätvärden en orchestrator kan använda för att uppnå svarstider som liknar dem som uppnås när resurserna överdimensionerade. Resultaten från forskningen visar att svarstiderna varierade avsevärt beroende på vilken autoskalningsstrategi som användes. Medan svarstiderna för 50:e percentilen var relativt konsekventa, uppvisade 99:e percentilen större variation. HPA visade generellt sett jämn prestanda, men med en något större variation i 99:e percentilen av svarstider. Å andra sidan resulterade VPA i högre svarstider både för 50:e och 99:e percentilen. Hybridmetoden presterade generellt sett bättre än VPA när det gäller svarstider och visade liknande resultat som HPA, även om det fanns en något större variabilitet. Mönstret för CPU-användning för hybridmetoden låg närmare HPA än VPA. CPU-användning och förfrågningshastighet visade sig vara effektiva mätvärden för att uppnå acceptabla svarstider i 99:e percentilen, vilket bekräftades av både HPA och hybridmetoden. Det är dock viktigt att notera att dessa resultat är specifika för den autoskalningskonfiguration, mikrotjänst och arbetsbelastningsmodell som användes i studien och kanske inte är universellt tillämpliga.
|
2 |
Predictive vertical CPU autoscaling in Kubernetes based on time-series forecasting with Holt-Winters exponential smoothing and long short-term memory / Prediktiv vertikal CPU-autoskalning i Kubernetes baserat på tidsserieprediktion med Holt-Winters exponentiell utjämning och långt korttidsminneWang, Thomas January 2021 (has links)
Private and public clouds require users to specify requests for resources such as CPU and memory (RAM) to be provisioned for their applications. The values of these requests do not necessarily relate to the application’s run-time requirements, but only help the cloud infrastructure resource manager to map requested virtual resources to physical resources. If an application exceeds these values, it might be throttled or even terminated. Consequently, requested values are often overestimated, resulting in poor resource utilization in the cloud infrastructure. Autoscaling is a technique used to overcome these problems. In this research, we formulated two new predictive CPU autoscaling strategies forKubernetes containerized applications, using time-series analysis, based on Holt-Winters exponential smoothing and long short-term memory (LSTM) artificial recurrent neural networks. The two approaches were analyzed, and their performances were compared to that of the default Kubernetes Vertical Pod Autoscaler (VPA). Efficiency was evaluated in terms of CPU resource wastage, and insufficient CPU percentage and amount for container workloads from Alibaba Cluster Trace 2018, and others. In our experiments, we observed that Kubernetes Vertical Pod Autoscaler (VPA) tended to perform poorly on workloads that periodically change. Our results showed that compared to VPA, predictive methods based on Holt- Winters exponential smoothing (HW) and Long Short-Term Memory (LSTM) can decrease CPU wastage by over 40% while avoiding CPU insufficiency for various CPU workloads. Furthermore, LSTM has been shown to generate stabler predictions compared to that of HW, which allowed for more robust scaling decisions. / Privata och offentliga moln kräver att användare begär mängden CPU och minne (RAM) som ska fördelas till sina applikationer. Mängden resurser är inte nödvändigtvis relaterat till applikationernas körtidskrav, utan är till för att molninfrastrukturresurshanteraren ska kunna kartlägga begärda virtuella resurser till fysiska resurser. Om en applikation överskrider dessa värden kan den saktas ner eller till och med krascha. För att undvika störningar överskattas begärda värden oftast, vilket kan resultera i ineffektiv resursutnyttjande i molninfrastrukturen. Autoskalning är en teknik som används för att överkomma dessa problem. I denna forskning formulerade vi två nya prediktiva CPU autoskalningsstrategier för containeriserade applikationer i Kubernetes, med hjälp av tidsserieanalys baserad på metoderna Holt-Winters exponentiell utjämning och långt korttidsminne (LSTM) återkommande neurala nätverk. De två metoderna analyserades, och deras prestationer jämfördes med Kubernetes Vertical Pod Autoscaler (VPA). Prestation utvärderades genom att observera under- och överutilisering av CPU-resurser, för diverse containerarbetsbelastningar från bl. a. Alibaba Cluster Trace 2018. Vi observerade att Kubernetes Vertical Pod Autoscaler (VPA) i våra experiment tenderade att prestera dåligt på arbetsbelastningar som förändras periodvist. Våra resultat visar att jämfört med VPA kan prediktiva metoder baserade på Holt-Winters exponentiell utjämning (HW) och långt korttidsminne (LSTM) minska överflödig CPU-användning med över 40 % samtidigt som de undviker CPU-brist för olika arbetsbelastningar. Ytterligare visade sig LSTM generera stabilare prediktioner jämfört med HW, vilket ledde till mer robusta autoskalningsbeslut.
|
Page generated in 0.0422 seconds