• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • Tagged with
  • 10
  • 10
  • 10
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude et inhibition de l'adhésine impliquée dans l'adhérence diffuse (AIDA-I) d'escherichia coli

Girard, Victoria January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
2

Étude de la biogenèse de l'autotransporteur AIDA-I d'Escherichia coli

Charbonneau, Marie-Ève 04 1900 (has links)
Les autotransporteurs monomériques, appartenant au système de sécrétion de type V, correspondent à une famille importante de facteurs de virulence bactériens. Plusieurs fonctions, souvent essentielles pour le développement d’une infection ou pour le maintien et la survie des bactéries dans l’organisme hôte, ont été décrites pour cette famille de protéines. Malgré l’importance de ces protéines, notre connaissance de leur biogenèse et de leur mécanisme d’action demeure relativement limitée. L’autotransporteur AIDA-I, retrouvé chez diverses souches d’Escherichia coli, est un autotransporter multifonctionnel typique impliqué dans l’adhésion et l’invasion cellulaire ainsi que dans la formation de biofilm et d’agrégats bactériens. Les domaines extracellulaires d’autotransporteurs monomériques sont responsables de la fonctionnalité et possèdent pratiquement tous une structure caractéristique d’hélice β. Nous avons mené une étude de mutagenèse aléatoire avec AIDA-I afin de comprendre la base de la multifonctionnalité de cette protéine. Par cette approche, nous avons démontré que les domaines passagers de certains autotransporteurs possèdent une organisation modulaire, ce qui signifie qu’ils sont construits sous la forme de modules fonctionnels. Les domaines passagers d’autotransporteurs peuvent être clivés et relâchés dans le milieu extracellulaire. Toutefois, malgré la diversité des mécanismes de clivage existants, plusieurs protéines, telles qu’AIDA-I, sont clivées par un mécanisme qui demeure inconnu. En effectuant une renaturation in vitro d’AIDA-I, couplée avec une approche de mutagenèse dirigée, nous avons démontré que cette protéine se clive par un mécanisme autocatalytique qui implique deux acides aminés possédant un groupement carboxyle. Ces résultats ont permis la description d’un nouveau mécanisme de clivage pour la famille des autotransporteurs monomériques. Une des particularités d’AIDA-I est sa glycosylation par une heptosyltransférase spécifique nommée Aah. La glycosylation est un concept plutôt récent chez les bactéries et pour l’instant, très peu de protéines ont été décrites comme glycosylées chez E. coli. Nous avons démontré que Aah est le prototype pour une nouvelle famille de glycosyltransférases bactériennes retrouvées chez diverses espèces de protéobactéries. La glycosylation d’AIDA-I est une modification cytoplasmique et post-traductionnelle. De plus, Aah ne reconnaît pas une séquence primaire, mais plutôt un motif structural. Ces observations sont uniques chez les bactéries et permettent d’élargir nos connaissances sur la glycosylation chez les procaryotes. La glycosylation par Aah est essentielle pour la conformation d’AIDA-I et par conséquent pour sa capacité de permettre l’adhésion. Puisque plusieurs homologues d’Aah sont retrouvés à proximité d’autotransporteurs monomériques putatifs, cette famille de glycosyltranférases pourrait être importante, sinon essentielle, pour la biogenèse et/ou la fonction de nombreux autotransporteurs. En conclusion, les résultats présentés dans cette thèse apportent de nouvelles informations et permettent une meilleure compréhension de la biogenèse d’une des plus importantes familles de protéines sécrétées chez les bactéries Gram négatif. / Monomeric autotransporters, a family of proteins that use the type V secretion pathway, are important mediators of virulence for many bacterial pathogens. Many functions important for host colonization and survival have been described for these proteins. Despite the recognized importance of this family of proteins, the mechanisms that are required for the biogenesis and functionality of monomeric autotransporters still remain poorly understood. The Escherichia coli adhesin involved in diffuse adherence (AIDA-I) is a classical multifunctional autotransporter protein that mediates bacterial aggregation and biofilm formation, as well as adhesion and invasion of cultured epithelial cells. Extracellular domains of autotransporters are responsible for the protein function and fold into a characteristic β-helical structure. We performed a random mutagenesis of the AIDA-I passenger domain in order to identify regions involved in the various phenotypes associated with the expression of this protein. Our study suggests that the passenger domain of AIDA-I possesses a modular organization, which means that AIDA-I is built with individual functional modules. Autotransporter passenger domains can be cleaved from the β-domain and released into the extracellular milieu. However, despite the fact that diverse cleavage mechanisms have been previously described, many autotransporters, like AIDA-I, are cleaved by an unknown mechanism. By monitoring the in vitro refolding and cleavage following by site-directed mutagenesis, we showed that AIDA-I processing is an autocatalytic event that involves two acidic residues. Our results unveil a new mechanism of auto-processing in the autotransporter family. AIDA-I is one of the few glycosylated proteins found in Escherichia coli. Glycosylation is mediated by a specific heptosyltransferase encoded by the aah gene, but little is known about the role of this modification and the mechanism involved. Our findings suggest that Aah represents the prototype of a new large family of bacterial protein O-glycosyltransferases that modify various substrates recognized through a structural motif. Furthermore, we showed that glycosylation occurs in the cytoplasm by a cotranslational mechanism. These observations are unique in bacteria and represent a significant advance in our comprehension of prokaryotic glycosylation. We also showed that glycosylation is required to ensure a normal conformation of AIDA-I and, as a consequence, is necessary for its cell-binding function. The finding that other autotransporters or large adhesin-encoding genes are linked to Aah homologue-encoding genes suggests that glycosylation may be important, if not essential, for the function of these proteins, as for AIDA-I. In conclusion, the results presented in this thesis bring new information about the autotransporter family and also give new insight into the mechanisms that are important for different aspects of the biogenesis of monomeric autotransporters.
3

Les bactéries exprimant AIDA-I interagissent avec l'apolipoprotéine A-I cellulaire

Létourneau, Jason 08 1900 (has links)
AIDA-I (adhesin involved in diffuse adherence) est une importante adhésine autotransporteur exprimée par certaines souches de Escherichia. coli impliquée dans la colonisation des porcelets sevrés causant la diarrhée post-sevrage et la maladie de l’œdème. Une précédente étude de notre laboratoire a identifié l’apolipoprotéine AI (ApoAI) du sérum porcin, la protéine structurale des lipoprotéines à haute densité, comme récepteur cellulaire putatif de AIDA-I. L’interaction entre ces deux protéines doit être caractérisée. Ici, nous montrons par ELISA que AIDA-I purifiée est capable d’interagir avec l’ApoAI humaine, mais également avec les apolipoprotéines B et E2. L’ApoAI est rencontrée sous deux formes, soit libre ou associée aux lipides. Nous montrons que la forme libre n’interagit pas avec les bactéries AIDA-I+ mais s’associe spécifiquement à l’ApoAI membranaire de cellules épithéliales HEp-2. Afin d’étudier le rôle de l’ApoAI dans l’adhésion des bactéries, nous avons infecté des cellules HEp-2 en présence d’anticorps dirigés contre l’ApoAI, mais l’adhésion des bactéries AIDA I+ n’a jamais été réduite. De plus, l’induction de l’expression de l’ApoAI par fénofibrate et GW7647 chez les cellules Caco 2 polarisée et Hep G2, n’a pas permis l’augmentation de l’adhésion cellulaire des E. coli exprimant AIDA-I. Notre étude suggère davantage que l’interaction entre AIDA-I et ApoAI n’intervient pas dans les mécanismes d’adhésion cellulaire. / The adhesin involved in diffuse adherence (AIDA-I) is an important autotransporter adhesin expressed by some strains of Escherichia coli and is involved in the intestinal colonisation of weaned piglets, causing the postweaning diarrhea and the edema disease. A previous study from our laboratory identified the apolipoprotein AI (ApoAI) from porcine serum, the structural protein of high density lipoproteins, as a putative receptor of AIDA-I. The interaction between these two proteins must be characterized. Here, we show that purified AIDA-I, using an ELISA assay, is able to bind the human ApoAI and the apolipoprotein B and E2. The ApoAI is found under two forms, either free or bound to lipid. We show that the free form of ApoAI does not interact with AIDA-I+ bacteria but specifically interact with membrane bound ApoAI on Hep-2 epithelial cells. To study the role of ApoAI in the adhesion of bacteria, we infected Hep-2 cells preincubated with antibodies to ApoAI. The adhesion of AIDA-I+ bacteria to the cells couldn’t be reduced. Additionally, the induction of ApoAI synthesis using fenofibrate and GW7647 on polarized Caco-2 or Hep G2 cells did not increase the adhesion of AIDA-I+ bacteria. Our study suggests that the interaction between AIDA-I and ApoAI is not involved in the cellular adhesion of the bacteria.
4

Les autotransporteurs auto-associatifs d’Escherichia coli : de facteurs de virulence à déterminants sociaux

Côté, Jean-Philippe 07 1900 (has links)
Les autotransporteurs monomériques représentent le système de sécrétion le plus simple et le plus utilisé chez les bactéries à Gram négatif. Les autotransporteurs monomériques sont des protéines modulaires qui contiennent toute l’information pour leur sécrétion dans leur séquence. Les phénotypes associés à l’expression d’un autotransporteur peuvent être très variés et, souvent, les autotransporteurs sont des protéines multifonctionnelles. C’est le cas notamment des autotransporteurs AIDA-I, TibA et Ag43 d’Escherichia coli qui promouvoient l’adhésion et l’invasion de cellules épithéliales, l’auto-agrégation des bactéries et la formation de biofilm. Ces trois autotransporteurs ont d’ailleurs été regroupés dans une même famille, appelée les autotransporteurs auto-associatifs (SAATs). À cause de leur fonctionnalité, les SAATs sont considérés comme étant d’importants facteurs de virulence d’Escherichia coli. Toutefois, il existe plusieurs différences entre les SAATs qui ne sont pas bien comprises, si bien que leur rôle pour les bactéries n’est toujours pas bien compris. Nous avons donc d’abord caractérisé TibA, le membre des SAATs le moins bien étudié à l’aide d’une étude structure-fonction. Nous avons observé que TibA était une protéine modulaire et que son domaine fonctionnel était composé de deux modules : un module d’auto-agrégation en N-terminal et un module d’adhésion en C-terminal. En comparant nos résultats avec ceux obtenus pour les autres SAATs, nous avons réalisé que l’organisation des trois SAATs était très variée, c’est-à-dire que les trois SAATs sont composés de modules différents. Nous avons par ailleurs observé cet arrangement en modules lorsque nous avons analysé plusieurs séquences d’aidA, suggérant qu’un mécanisme d’échange et d’acquisition de modules était à la base de l’évolution des SAATs. Sans surprise, nous avons aussi observé que la famille des SAATs ne se limitait pas à AIDA-I, TibA et Ag43 et ne se limitait pas à Escherichia coli. La comparaison a aussi révélé l’importance du phénotype d’auto-agrégation dans la fonctionnalité des SAATs. Nous avons donc entrepris une étude du mécanisme d’auto-agrégation. Nos résultats on montré que l’auto-agrégation était le résultat d’une interaction directe SAAT/SAAT et ont mis en évidence un mécanisme similaire à celui utilisé par les cadhérines eucaryotes. De plus, nous avons observé que, comme les cadhérines, les SAATs étaient impliqués dans des interactions homophiliques; un SAAT interagit donc spécifiquement avec lui-même et non avec un différent SAAT. Finalement, les SAATs font parties des quelques protéines qui sont glycosylées chez Escherichia coli. Nous avons déterminé que le rôle de la glycosylation de TibA était de stabiliser la protéine et de lui donner la flexibilité nécessaire pour moduler sa conformation et, ainsi, être pleinement fonctionnelle. Globalement, nos résultats suggèrent que les SAATs sont des molécules « cadhérines-like » qui permettent la reconnaissance de soi chez les bactéries. Une telle habilité à discriminer entre le soi et le non-soi pourrait donc être utilisée par les bactéries pour organiser les communautés bactériennes. / Autotransporters are versatile virulence factors of Gram-negative bacteria and use one of the simplest and most widespread secretion system in bacteria. The name autotransporter originate from the observation that all the information needed for the secretion of the protein is encoded in its own sequence, meaning that autotransporters do not need a specialized secretion apparatus. Many autotransporters are multifunctional proteins and can perform a large variety of functions. The self-associating autotransporters (SAATs), represented by AIDA-I, TibA and Ag43, are such multifunctional proteins and can mediate the adhesion and invasion of epithelial cells, the auto-aggregation of bacteria and the formation of biofilm. Because of these functionalities, SAATs are considered important virulence factors of Escherichia coli. However, there are many differences between the SAATs and we still do not know their exact role for the bacteria. Therefore, we have realized a structure-function study of TibA, the least studied SAAT. Our study showed that TibA is a modular protein and that the functional domain of TibA is composed of two modules: an N-terminal module responsible for auto-aggregation and a C-terminal module responsible for adhesion. Our results showed that the organization of AIDA-I, TibA and Ag43 is different and that the SAATs represent different assemblies of modules. We also observed the modular organization when we analyzed various sequence of aidA, suggesting that the SAATs have evolved by a mechanism of domain shuffling. Not surprisingly, we have found new SAATs in Escherichia coli and in other proteobacteria. Our results also highlighted the importance of auto-aggregation in the functionality of the SAATs. We therefore assessed the mechanism of SAAT-mediated auto-aggregation of bacteria. Our results showed that SAATs mediate auto-aggregation of bacteria through direct SAAT/SAAT interactions and that these interactions were reminiscent of the interactions made by cadherin molecules in eukaryotes. We further observed that the SAATs were involved in homophilic interactions, as it is the case with cadherin molecules. SAATs are part of the few proteins that are glycosylated in Escherichia coli. We therefore characterized the glycosylation of TibA and found that glycosylation of TibA stabilized the protein and allowed the protein to modulate its conformation, resulting in a fully functional protein. Taken together, our results suggest that the SAATs may be cadherin-like molecules by bacteria in order to discriminate between self and non-self. Such an ability to discriminate self from non-self is rarely evoked in bacteria, but could play a role in the organization of multicellular communities.
5

Étude et inhibition de l'adhésine impliquée dans l'adhérence diffuse (AIDA-I) d'escherichia coli

Girard, Victoria January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
6

Étude de la biogenèse de l'autotransporteur AIDA-I d'Escherichia coli

Charbonneau, Marie-Ève 04 1900 (has links)
Les autotransporteurs monomériques, appartenant au système de sécrétion de type V, correspondent à une famille importante de facteurs de virulence bactériens. Plusieurs fonctions, souvent essentielles pour le développement d’une infection ou pour le maintien et la survie des bactéries dans l’organisme hôte, ont été décrites pour cette famille de protéines. Malgré l’importance de ces protéines, notre connaissance de leur biogenèse et de leur mécanisme d’action demeure relativement limitée. L’autotransporteur AIDA-I, retrouvé chez diverses souches d’Escherichia coli, est un autotransporter multifonctionnel typique impliqué dans l’adhésion et l’invasion cellulaire ainsi que dans la formation de biofilm et d’agrégats bactériens. Les domaines extracellulaires d’autotransporteurs monomériques sont responsables de la fonctionnalité et possèdent pratiquement tous une structure caractéristique d’hélice β. Nous avons mené une étude de mutagenèse aléatoire avec AIDA-I afin de comprendre la base de la multifonctionnalité de cette protéine. Par cette approche, nous avons démontré que les domaines passagers de certains autotransporteurs possèdent une organisation modulaire, ce qui signifie qu’ils sont construits sous la forme de modules fonctionnels. Les domaines passagers d’autotransporteurs peuvent être clivés et relâchés dans le milieu extracellulaire. Toutefois, malgré la diversité des mécanismes de clivage existants, plusieurs protéines, telles qu’AIDA-I, sont clivées par un mécanisme qui demeure inconnu. En effectuant une renaturation in vitro d’AIDA-I, couplée avec une approche de mutagenèse dirigée, nous avons démontré que cette protéine se clive par un mécanisme autocatalytique qui implique deux acides aminés possédant un groupement carboxyle. Ces résultats ont permis la description d’un nouveau mécanisme de clivage pour la famille des autotransporteurs monomériques. Une des particularités d’AIDA-I est sa glycosylation par une heptosyltransférase spécifique nommée Aah. La glycosylation est un concept plutôt récent chez les bactéries et pour l’instant, très peu de protéines ont été décrites comme glycosylées chez E. coli. Nous avons démontré que Aah est le prototype pour une nouvelle famille de glycosyltransférases bactériennes retrouvées chez diverses espèces de protéobactéries. La glycosylation d’AIDA-I est une modification cytoplasmique et post-traductionnelle. De plus, Aah ne reconnaît pas une séquence primaire, mais plutôt un motif structural. Ces observations sont uniques chez les bactéries et permettent d’élargir nos connaissances sur la glycosylation chez les procaryotes. La glycosylation par Aah est essentielle pour la conformation d’AIDA-I et par conséquent pour sa capacité de permettre l’adhésion. Puisque plusieurs homologues d’Aah sont retrouvés à proximité d’autotransporteurs monomériques putatifs, cette famille de glycosyltranférases pourrait être importante, sinon essentielle, pour la biogenèse et/ou la fonction de nombreux autotransporteurs. En conclusion, les résultats présentés dans cette thèse apportent de nouvelles informations et permettent une meilleure compréhension de la biogenèse d’une des plus importantes familles de protéines sécrétées chez les bactéries Gram négatif. / Monomeric autotransporters, a family of proteins that use the type V secretion pathway, are important mediators of virulence for many bacterial pathogens. Many functions important for host colonization and survival have been described for these proteins. Despite the recognized importance of this family of proteins, the mechanisms that are required for the biogenesis and functionality of monomeric autotransporters still remain poorly understood. The Escherichia coli adhesin involved in diffuse adherence (AIDA-I) is a classical multifunctional autotransporter protein that mediates bacterial aggregation and biofilm formation, as well as adhesion and invasion of cultured epithelial cells. Extracellular domains of autotransporters are responsible for the protein function and fold into a characteristic β-helical structure. We performed a random mutagenesis of the AIDA-I passenger domain in order to identify regions involved in the various phenotypes associated with the expression of this protein. Our study suggests that the passenger domain of AIDA-I possesses a modular organization, which means that AIDA-I is built with individual functional modules. Autotransporter passenger domains can be cleaved from the β-domain and released into the extracellular milieu. However, despite the fact that diverse cleavage mechanisms have been previously described, many autotransporters, like AIDA-I, are cleaved by an unknown mechanism. By monitoring the in vitro refolding and cleavage following by site-directed mutagenesis, we showed that AIDA-I processing is an autocatalytic event that involves two acidic residues. Our results unveil a new mechanism of auto-processing in the autotransporter family. AIDA-I is one of the few glycosylated proteins found in Escherichia coli. Glycosylation is mediated by a specific heptosyltransferase encoded by the aah gene, but little is known about the role of this modification and the mechanism involved. Our findings suggest that Aah represents the prototype of a new large family of bacterial protein O-glycosyltransferases that modify various substrates recognized through a structural motif. Furthermore, we showed that glycosylation occurs in the cytoplasm by a cotranslational mechanism. These observations are unique in bacteria and represent a significant advance in our comprehension of prokaryotic glycosylation. We also showed that glycosylation is required to ensure a normal conformation of AIDA-I and, as a consequence, is necessary for its cell-binding function. The finding that other autotransporters or large adhesin-encoding genes are linked to Aah homologue-encoding genes suggests that glycosylation may be important, if not essential, for the function of these proteins, as for AIDA-I. In conclusion, the results presented in this thesis bring new information about the autotransporter family and also give new insight into the mechanisms that are important for different aspects of the biogenesis of monomeric autotransporters.
7

Les autotransporteurs auto-associatifs d’Escherichia coli : de facteurs de virulence à déterminants sociaux

Côté, Jean-Philippe 07 1900 (has links)
Les autotransporteurs monomériques représentent le système de sécrétion le plus simple et le plus utilisé chez les bactéries à Gram négatif. Les autotransporteurs monomériques sont des protéines modulaires qui contiennent toute l’information pour leur sécrétion dans leur séquence. Les phénotypes associés à l’expression d’un autotransporteur peuvent être très variés et, souvent, les autotransporteurs sont des protéines multifonctionnelles. C’est le cas notamment des autotransporteurs AIDA-I, TibA et Ag43 d’Escherichia coli qui promouvoient l’adhésion et l’invasion de cellules épithéliales, l’auto-agrégation des bactéries et la formation de biofilm. Ces trois autotransporteurs ont d’ailleurs été regroupés dans une même famille, appelée les autotransporteurs auto-associatifs (SAATs). À cause de leur fonctionnalité, les SAATs sont considérés comme étant d’importants facteurs de virulence d’Escherichia coli. Toutefois, il existe plusieurs différences entre les SAATs qui ne sont pas bien comprises, si bien que leur rôle pour les bactéries n’est toujours pas bien compris. Nous avons donc d’abord caractérisé TibA, le membre des SAATs le moins bien étudié à l’aide d’une étude structure-fonction. Nous avons observé que TibA était une protéine modulaire et que son domaine fonctionnel était composé de deux modules : un module d’auto-agrégation en N-terminal et un module d’adhésion en C-terminal. En comparant nos résultats avec ceux obtenus pour les autres SAATs, nous avons réalisé que l’organisation des trois SAATs était très variée, c’est-à-dire que les trois SAATs sont composés de modules différents. Nous avons par ailleurs observé cet arrangement en modules lorsque nous avons analysé plusieurs séquences d’aidA, suggérant qu’un mécanisme d’échange et d’acquisition de modules était à la base de l’évolution des SAATs. Sans surprise, nous avons aussi observé que la famille des SAATs ne se limitait pas à AIDA-I, TibA et Ag43 et ne se limitait pas à Escherichia coli. La comparaison a aussi révélé l’importance du phénotype d’auto-agrégation dans la fonctionnalité des SAATs. Nous avons donc entrepris une étude du mécanisme d’auto-agrégation. Nos résultats on montré que l’auto-agrégation était le résultat d’une interaction directe SAAT/SAAT et ont mis en évidence un mécanisme similaire à celui utilisé par les cadhérines eucaryotes. De plus, nous avons observé que, comme les cadhérines, les SAATs étaient impliqués dans des interactions homophiliques; un SAAT interagit donc spécifiquement avec lui-même et non avec un différent SAAT. Finalement, les SAATs font parties des quelques protéines qui sont glycosylées chez Escherichia coli. Nous avons déterminé que le rôle de la glycosylation de TibA était de stabiliser la protéine et de lui donner la flexibilité nécessaire pour moduler sa conformation et, ainsi, être pleinement fonctionnelle. Globalement, nos résultats suggèrent que les SAATs sont des molécules « cadhérines-like » qui permettent la reconnaissance de soi chez les bactéries. Une telle habilité à discriminer entre le soi et le non-soi pourrait donc être utilisée par les bactéries pour organiser les communautés bactériennes. / Autotransporters are versatile virulence factors of Gram-negative bacteria and use one of the simplest and most widespread secretion system in bacteria. The name autotransporter originate from the observation that all the information needed for the secretion of the protein is encoded in its own sequence, meaning that autotransporters do not need a specialized secretion apparatus. Many autotransporters are multifunctional proteins and can perform a large variety of functions. The self-associating autotransporters (SAATs), represented by AIDA-I, TibA and Ag43, are such multifunctional proteins and can mediate the adhesion and invasion of epithelial cells, the auto-aggregation of bacteria and the formation of biofilm. Because of these functionalities, SAATs are considered important virulence factors of Escherichia coli. However, there are many differences between the SAATs and we still do not know their exact role for the bacteria. Therefore, we have realized a structure-function study of TibA, the least studied SAAT. Our study showed that TibA is a modular protein and that the functional domain of TibA is composed of two modules: an N-terminal module responsible for auto-aggregation and a C-terminal module responsible for adhesion. Our results showed that the organization of AIDA-I, TibA and Ag43 is different and that the SAATs represent different assemblies of modules. We also observed the modular organization when we analyzed various sequence of aidA, suggesting that the SAATs have evolved by a mechanism of domain shuffling. Not surprisingly, we have found new SAATs in Escherichia coli and in other proteobacteria. Our results also highlighted the importance of auto-aggregation in the functionality of the SAATs. We therefore assessed the mechanism of SAAT-mediated auto-aggregation of bacteria. Our results showed that SAATs mediate auto-aggregation of bacteria through direct SAAT/SAAT interactions and that these interactions were reminiscent of the interactions made by cadherin molecules in eukaryotes. We further observed that the SAATs were involved in homophilic interactions, as it is the case with cadherin molecules. SAATs are part of the few proteins that are glycosylated in Escherichia coli. We therefore characterized the glycosylation of TibA and found that glycosylation of TibA stabilized the protein and allowed the protein to modulate its conformation, resulting in a fully functional protein. Taken together, our results suggest that the SAATs may be cadherin-like molecules by bacteria in order to discriminate between self and non-self. Such an ability to discriminate self from non-self is rarely evoked in bacteria, but could play a role in the organization of multicellular communities.
8

Les bactéries exprimant AIDA-I interagissent avec l'apolipoprotéine A-I cellulaire

Létourneau, Jason 08 1900 (has links)
AIDA-I (adhesin involved in diffuse adherence) est une importante adhésine autotransporteur exprimée par certaines souches de Escherichia. coli impliquée dans la colonisation des porcelets sevrés causant la diarrhée post-sevrage et la maladie de l’œdème. Une précédente étude de notre laboratoire a identifié l’apolipoprotéine AI (ApoAI) du sérum porcin, la protéine structurale des lipoprotéines à haute densité, comme récepteur cellulaire putatif de AIDA-I. L’interaction entre ces deux protéines doit être caractérisée. Ici, nous montrons par ELISA que AIDA-I purifiée est capable d’interagir avec l’ApoAI humaine, mais également avec les apolipoprotéines B et E2. L’ApoAI est rencontrée sous deux formes, soit libre ou associée aux lipides. Nous montrons que la forme libre n’interagit pas avec les bactéries AIDA-I+ mais s’associe spécifiquement à l’ApoAI membranaire de cellules épithéliales HEp-2. Afin d’étudier le rôle de l’ApoAI dans l’adhésion des bactéries, nous avons infecté des cellules HEp-2 en présence d’anticorps dirigés contre l’ApoAI, mais l’adhésion des bactéries AIDA I+ n’a jamais été réduite. De plus, l’induction de l’expression de l’ApoAI par fénofibrate et GW7647 chez les cellules Caco 2 polarisée et Hep G2, n’a pas permis l’augmentation de l’adhésion cellulaire des E. coli exprimant AIDA-I. Notre étude suggère davantage que l’interaction entre AIDA-I et ApoAI n’intervient pas dans les mécanismes d’adhésion cellulaire. / The adhesin involved in diffuse adherence (AIDA-I) is an important autotransporter adhesin expressed by some strains of Escherichia coli and is involved in the intestinal colonisation of weaned piglets, causing the postweaning diarrhea and the edema disease. A previous study from our laboratory identified the apolipoprotein AI (ApoAI) from porcine serum, the structural protein of high density lipoproteins, as a putative receptor of AIDA-I. The interaction between these two proteins must be characterized. Here, we show that purified AIDA-I, using an ELISA assay, is able to bind the human ApoAI and the apolipoprotein B and E2. The ApoAI is found under two forms, either free or bound to lipid. We show that the free form of ApoAI does not interact with AIDA-I+ bacteria but specifically interact with membrane bound ApoAI on Hep-2 epithelial cells. To study the role of ApoAI in the adhesion of bacteria, we infected Hep-2 cells preincubated with antibodies to ApoAI. The adhesion of AIDA-I+ bacteria to the cells couldn’t be reduced. Additionally, the induction of ApoAI synthesis using fenofibrate and GW7647 on polarized Caco-2 or Hep G2 cells did not increase the adhesion of AIDA-I+ bacteria. Our study suggests that the interaction between AIDA-I and ApoAI is not involved in the cellular adhesion of the bacteria.
9

L’apolipoprotéine A-I interagit avec l’adhésine impliquée dans l’adhérence diffuse (AIDA-I) d’Escherichia coli : rôle lors du processus d’adhésion et d’invasion

René, Mélissa 05 1900 (has links)
L’adhésine impliquée dans l’adhérence diffuse (AIDA-I) est une adhésine bactérienne présente chez certaines souches d’Escherichia coli qui, associée aux toxines Stx2e ou STb, contribue à l’apparition de la maladie de l’œdème ou de la diarrhée post-sevrage chez les porcelets. AIDA-I est un autotransporteur qui confère des capacités d’autoaggrégation, de formation de biofilms et d’adhésion. L’objectif principal du projet de recherche consistait en la recherche de récepteur(s) potentiel(s) d’AIDA-I. Les bactéries pathogènes adhèrent aux cellules-cibles soit en liant directement des molécules à la surface cellulaire ou en utilisant des molécules intermédiaires qui permettent de diminuer la distance séparant la bactérie de la cellule-cible. Puisque le sérum est un fluide qui contient de nombreuses molécules, celui-ci a été utilisé comme matériel de départ pour l’isolement de récepteur(s) potentiels. Nous avons isolé un récepteur potentiel à partir du sérum porcin : l’apolipoprotéine A-I. L’interaction entre l’apolipoprotéine A-I et AIDA-I a été confirmée par ELISA et microscopie à fluorescence. La capacité à envahir les cellules épithéliales offre aux pathogènes la possibilité d’établir une niche intracellulaire qui les protègent contre les attaques du milieu extérieur. La présente étude a démontré que la présence d’AIDA-I en tant que seul facteur de virulence chez une souche de laboratoire permet de conférer la capacité d’envahir les cellules sans promouvoir la survie intracellulaire. L’étude de la souche sauvage 2787, exprimant AIDA-I en association avec d’autres facteurs de virulence, a démontré une différence significative pour les phénotypes d’invasion et de survie intracellulaire face à la souche de laboratoire exprimant AIDA-I. / The adhesin involved in diffuse adherence (AIDA-I) is a bacterial adhesin associated with some Escherichia coli strains that might, when associated with toxin Stx2e or STb, contribute to the development of edema disease or post-weaning diarrhea in piglets. AIDA-I is an autotransporter that mediates various phenotypes such as adhesion, autoaggregation and biofilm formation. The main aim of our project was to find potential receptor(s) for AIDA-I. Pathogens can either bind cell directly by targeting exposed cell surface molecules or use an intermediate molecule as a bridge to lessen the space separating them from their target cell. Serum is known to contain a wide range of molecules so it has been used as raw material for the isolation of a putative receptor for AIDA-I. We isolated a putative receptor for AIDA-I: the apolipoprotein A-I. The interaction between the apolipoprotein A-I and AIDA-I was confirmed by ELISA and fluorescent microscopy. The capacity to invade epithelial cell enables pathogens to create an intracellular niche that protects them against attacks from the extracellular environment. The present report has shown that the presence of AIDA-I as the sole virulence factor in a laboratory strain, enable bacteria to invade cultured cells but does not promote intracellular survival. Studies conducted on wild-type strain 2787, which express AIDA-I in association with other virulence factors, has shown a significant difference in invasion and intracellular survival phenotypes compared to the laboratory strain expressing AIDA-I.
10

L’apolipoprotéine A-I interagit avec l’adhésine impliquée dans l’adhérence diffuse (AIDA-I) d’Escherichia coli : rôle lors du processus d’adhésion et d’invasion

René, Mélissa 05 1900 (has links)
L’adhésine impliquée dans l’adhérence diffuse (AIDA-I) est une adhésine bactérienne présente chez certaines souches d’Escherichia coli qui, associée aux toxines Stx2e ou STb, contribue à l’apparition de la maladie de l’œdème ou de la diarrhée post-sevrage chez les porcelets. AIDA-I est un autotransporteur qui confère des capacités d’autoaggrégation, de formation de biofilms et d’adhésion. L’objectif principal du projet de recherche consistait en la recherche de récepteur(s) potentiel(s) d’AIDA-I. Les bactéries pathogènes adhèrent aux cellules-cibles soit en liant directement des molécules à la surface cellulaire ou en utilisant des molécules intermédiaires qui permettent de diminuer la distance séparant la bactérie de la cellule-cible. Puisque le sérum est un fluide qui contient de nombreuses molécules, celui-ci a été utilisé comme matériel de départ pour l’isolement de récepteur(s) potentiels. Nous avons isolé un récepteur potentiel à partir du sérum porcin : l’apolipoprotéine A-I. L’interaction entre l’apolipoprotéine A-I et AIDA-I a été confirmée par ELISA et microscopie à fluorescence. La capacité à envahir les cellules épithéliales offre aux pathogènes la possibilité d’établir une niche intracellulaire qui les protègent contre les attaques du milieu extérieur. La présente étude a démontré que la présence d’AIDA-I en tant que seul facteur de virulence chez une souche de laboratoire permet de conférer la capacité d’envahir les cellules sans promouvoir la survie intracellulaire. L’étude de la souche sauvage 2787, exprimant AIDA-I en association avec d’autres facteurs de virulence, a démontré une différence significative pour les phénotypes d’invasion et de survie intracellulaire face à la souche de laboratoire exprimant AIDA-I. / The adhesin involved in diffuse adherence (AIDA-I) is a bacterial adhesin associated with some Escherichia coli strains that might, when associated with toxin Stx2e or STb, contribute to the development of edema disease or post-weaning diarrhea in piglets. AIDA-I is an autotransporter that mediates various phenotypes such as adhesion, autoaggregation and biofilm formation. The main aim of our project was to find potential receptor(s) for AIDA-I. Pathogens can either bind cell directly by targeting exposed cell surface molecules or use an intermediate molecule as a bridge to lessen the space separating them from their target cell. Serum is known to contain a wide range of molecules so it has been used as raw material for the isolation of a putative receptor for AIDA-I. We isolated a putative receptor for AIDA-I: the apolipoprotein A-I. The interaction between the apolipoprotein A-I and AIDA-I was confirmed by ELISA and fluorescent microscopy. The capacity to invade epithelial cell enables pathogens to create an intracellular niche that protects them against attacks from the extracellular environment. The present report has shown that the presence of AIDA-I as the sole virulence factor in a laboratory strain, enable bacteria to invade cultured cells but does not promote intracellular survival. Studies conducted on wild-type strain 2787, which express AIDA-I in association with other virulence factors, has shown a significant difference in invasion and intracellular survival phenotypes compared to the laboratory strain expressing AIDA-I.

Page generated in 0.0683 seconds