Spelling suggestions: "subject:"coverage flow"" "subject:"beverage flow""
1 |
Effects of Stochastic (Random) Surface Roughness on Hydrodynamic Lubrication of Deterministic AsperityVyas, Prerit 01 January 2005 (has links)
In order to achieve enhanced and cost-effective performance of engineering components, Surface Engineering embraces traditional and innovative surface technologies which modify the surface properties of metallic and non-metallic engineering components for specific and sometime unique engineering purposes. The surface roughness of an engineered surface may be classified as: the random surface roughness which is a product of surface finishing and the deterministic surface roughness which is engineered to increase the lubrication characteristics of the hydro dynamically lubricated thrust ring. The effect of stochastic/random roughness can not be ignored when the roughness is of the same amplitude as that of fluid film thickness. Average flow model derived in terms of flow factors which are functions of the roughness characteristics is used to study the random surface roughness effects on hydrodynamic lubrication of deterministic asperity. In addition, the effect of boundary conditions on flow factors is studied by calculating the pressure and shear flow factor using two different new boundary conditions. The results are obtained for random surface roughness having a Gaussian distribution of roughness heights.
|
2 |
RULE EXTRACTION TO ESTABLISH CRITERIA FOR MINICELL DESIGN IN MASS CUSTOMIZATION MANUFACTURINGThuramalla, Smitha 01 January 2007 (has links)
Minicell-based manufacturing system is used in identifying best minicell designs. The existing method of minicell design generates best minicell designs by designing and scheduling minicells simultaneously. While in this research designing of minicells and scheduling of jobs in minicells is done separately. This research evaluates the effectiveness of hierarchical approach and compares with simultaneous method. Minicell designs with respect to average flow times and machine capacities and both are identified in a multi-stage flow shop environment. Rules for the extraction of good minicell designs in mass customization manufacturing systems are also established.
|
3 |
A Solution to Small Sample Bias in Flood EstimationMetler, William 06 May 1972 (has links)
From the Proceedings of the 1972 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 5-6, 1972, Prescott, Arizona / In order to design culverts and bridges, it is necessary to compute an estimate of the design flood. Regionalization of flows by regression analysis is currently the method advocated by the U.S. Geological Survey to provide an estimate of the culvert and bridge design floods. In the regression analysis a set of simultaneous equations is solved for the regression coefficients which will be used to compute a design flood prediction for a construction site. The dependent variables in the set of simultaneous equations are the historical estimates of the design flood computed from the historical records of gaged sites in a region. If a log normal distribution of the annual peak flows is assumed, then the historical estimate of the design flood for site i may be computed by the normal as log Q(d,i) = x(i) + k(d)s(i). However because of the relatively small samples of peak flows commonly used in this problem, this paper shows that the historical estimate should be computed by to log Q(d,i) = X(i) + t(d,n-1) √((n+1)/n) s(i) where t(d,n-1) is obtained from tables of the Student's t. This t-estimate when used as input to the regression analysis provides a more realistic prediction in light of the small sample size, than the estimate yielded by the normal.
|
4 |
Citlivostní analýza metody tlak-čas na nepřesnosti měření / Sensitivity analysis of pressure-time method on measurement uncertaintyČervinková, Kateřina January 2019 (has links)
The pressure-time method is one of two methods of measuring the flow rate on large hydraulic structures applicable to IEC 60041, which is based on the temporal integration of the measured pressure difference and the formation of a water hammer in a closed pipe. The aim of this master thesis is to perform a literature review of this method and to evaluate the flow rate of the measured data. Furthermore, the thesis deals with determination of the sensitivity of the evaluated flow rate to the weights of individual pressure sensors and to numerical modifying of the measured pressures. The first part is made using MS Excel. The flow rate is always evaluates with only one pressure sensor and it is compared with the original flow rate. There is research, how absence of the sensor has an impact on the evaluated flow rate. In the second part of the determination of the sensitivity of the evaluated flow rate, various encroachment (signal smoothing, noise, time delay, frequency band removal) are performed of measured pressure signal in Matlab. Various surrounding influences or sensors failures are simulated.
|
Page generated in 0.0573 seconds