Spelling suggestions: "subject:"coverage treatment effect"" "subject:"beverage treatment effect""
11 |
Essays in partial identification and applications to treatment effects and policy evaluationMourifié, Ismael Yacoub 05 1900 (has links)
No description available.
|
12 |
Empirická analýza projektu: Stáže ve firmách / The empirical analysis of the project: Stáže ve firmáchŠvarc, Michal January 2013 (has links)
This paper is dedicated to the empirical analysis of the pilot trainee project Stáže ve firmách, which is considered as treatment in this analysis. The main objective of the empirical analysis is estimation of average treatment effect(ATE) and average treatment effect on treated(ATET) for characteristics like socioeconomic status and wage. Counterfactual methods for policy impact evaluation like Difference in Differences Estimator(DiD), First Differences Estimator(FD) and Propensity Score Matching(PSM) are used to estimation mentioned effects. This paper contains extension of Assignment Problem that is used for people matching purposes as alternative for PSM. This way of matching provides better control over creation of couples. Resulting pairs are more similar in selected characteristics due to better control during couples creation process.
|
13 |
[en] COMBINING STRATEGIES FOR ESTIMATION OF TREATMENT EFFECTS / [pt] COMBINANDO ESTRATÉGIAS PARA ESTIMAÇÃO DE EFEITOS DE TRATAMENTORAFAEL DE CARVALHO CAYRES PINTO 19 January 2018 (has links)
[pt] Uma ferramenta importante na avaliação de políticas econômicas é a estimação do efeito médio de um programa ou tratamento sobre uma variável de interesse. A principal dificuldade desse cálculo deve-se µa atribuição do tratamento aos potenciais participantes geralmente não ser aleatória, causando viés de seleção quando desconsiderada. Uma maneira de resolver esse problema é supor que o econometrista observa um conjunto de características determinantes, a menos de um componente estritamente aleatório,
da participação. Sob esta hipótese, conhecida como Ignorabilidade, métodos semiparamétricos de estimação foram desenvolvidos, entre os quais a imputação de valores contrafactuais e a reponderação da amostra. Ambos são consistentes e capazes de atingir, assintoticamente, o limite de eficiência
semiparamétrico. Entretanto, nas amostras frequentemente disponíveis, o desempenho desses métodos nem sempre é satisfatório. O objetivo deste trabalho é estudar como a combinação das duas estratégias pode produzir estimadores com melhores propriedades em amostras pequenas. Para isto, consideramos duas formas de integrar essas abordagens, tendo como referencial teórico a literatura de estimação duplamente robusta desenvolvida por James Robins e co-autores. Analisamos suas propriedades e discutimos por que podem superar o uso isolado de cada uma das técnicas que os compõem. Finalmente, comparamos, num exercício de Monte Carlo, o desempenho desses estimadores com os de imputação e reponderação. Os resultados mostram que a combinação de estratégias pode reduzir o viés e a variância, mas isso depende da forma como é implementada. Concluímos que a escolha dos parâmetros de suavização é decisiva para o desempenho da estimação em amostras de tamanho moderado. / [en] Estimation of mean treatment effect is an important tool for evaluating economic policy. The main difficulty in this calculation is caused by nonrandom assignment of potential participants to treatment, which leads to
selection bias when ignored. A solution to this problem is to suppose the econometrician observes a set of covariates that determine participation, except for a strictly random component. Under this assumption, known as Ignorability, semiparametric methods were developed, including imputation of counterfactual outcomes and sample reweighing. Both are consistent and can asymptotically achieve the semiparametric efficiency bound. However, in sample sizes commonly available, their performance is not always satisfactory. The goal of this dissertation is to study how combining these strategies can lead to better estimation in small samples. We consider two different ways of merging these methods, based on Doubly Robust inference literature developed by James Robins and his co-authors, analyze their properties and discuss why they would overcome each of their components. Finally, we compare the proposed estimators to imputation and reweighing in a Monte Carlo exercise. Results show that while combined strategies may reduce bias and variance, it depends on the way it is implemented. We conclude that the choice of smoothness parameters is critical to obtain good estimates in moderate size samples.
|
Page generated in 0.0691 seconds