• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Digital Microwave Control of Superconducting Qubits / Digital Mikrovågskontroll av Supraledande Kvantbitar

Di Carlo, Giuseppe Ruggero January 2022 (has links)
We manipulate two superconducting qubits using digital microwave electronics. Starting fromtheir characterization, we develop a real-time reset scheme and implement the iSwap gate. Thequbits’ parameters are obtained using standard single-qubit characterization techniques, such asRabi and Ramsey oscillations and frequency sweep of the resonators. We also characterized theexperimental setup, including finding the working point of a Josephson Parametric Amplifierand the coupler between the two qubits. We solve the linear differential equations that modelthe resonator, in order to design a high-fidelity, single-shot qubit-measurement pulse shape,which actively empties the cavity. Using this pulse, we achieve a readout assignment fidelity of99.9%. The readout is formed in real-time using template matching. In addition, we implementa conditional reset of the qubit’s state in 1.4 μs, which resets the excited state population from5.4% to 0.5%. We simulate the cavity using QuTip to further optimize the readout pulse.Furthermore, we characterize the third energy level of the qubit to implement a qutrit readoutand observe a second excited state population of 0.3%, in accordance with theory. Finally,we implement the iSwap gate that, together with single-qubit gates, constitute a set of universalquantum gates, where we swap the 95.4% of the quantum state between the qubits in 690 ns. Allexperiments, including the pulse events and synchronization of the readout and feedback, wereperformed using a digital microwave platform based on a radio-frequency-on-a-chip system,and implemented using a Python interface. / Vi manipulerar två supraledande kvantbitar med digital mikrovågselektronik. Vi utgår frånderas karakterisering och utvecklar en realtidsåterställningsschema och implementerar iSwap-grinden. Kvantbitarnas parametrar erhålls med standardtekniker för karakterisering av enskildakvantbitar, såsom Rabi- och Ramsey-svängningar och frekvenssvep av resonatorerna. Vikaraketeriserar även den experimentella uppställningen, där vi finner arbetspunkten för enJosephson-parametrisk förstärkare, samt kopplaren mellan de två kvantbitarna. Vi löser delinjära differentialekvationerna som modellerar resonatorn, i syfte att designa en pulsformför en enkelmätning av en kvantbit med hög tillförlitlighet som aktivt tömmer kaviteten.Med denna puls uppnår vi en avläsningstillförlitlighet på 99,9 %. Avläsningspulsen bildas irealtid med hjälp av mallmatchning. Därtill implementerar vi en villkorlig återställning avkvantbitens tillstånd på 1,4 μs, vilket återställer den exciterade tillståndspopulationen från 5,4 %till 0,5 %. Vi simulerar kaviteten med QuTip för att ytterligare optimera avläsningspulsen.Dessutom karakteriserar vi den tredje energinivån på kvantbiten för att implementera enså-kallad qutrit-avläsning och observerar en andraexciterad tillståndspopulation på 0,3 %,i enlighet med teorin. Slutligen implementerar vi iSwap-grinden som, tillsammans medgrindarna för enskilda kvantbitar, utgör en uppsättning universella kvantgrindar, är vi byter95,4 % av kvanttillståndet mellan våra kvantbitarna på 0,6 μs. Alla experiment, såsompulshändelserna och synkroniseringen av avläsningspulsen och återkopplingspulsen, utfördesmed hjälp av en digital mikrovågsplattform, baserad på ett radiofrekvens-på-ett-chip-system,och implementerades med ett Python-gränssnitt.

Page generated in 0.1168 seconds