• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aspekte van sommige ultrastrukturele en fisiologiese veranderinge van avokadovrugte (Persea americana Mill, kultivar Fuerte) gedurende koelopberging en rypwording

Koster, Susanna Aletta 05 February 2014 (has links)
M.Sc. (Botany) / Refer to full text
2

Determinants of competitiveness among smallholder avacado farmers in Vhembe District of Limpopo Province, South Africa

Masikhwa, Humbulani January 2018 (has links)
Thesis (MSc. (Agricultural Economics)) -- University of Limpopo, 2018 / The avocado industry is a major industry in South Africa and this can be seen by its economic contribution. Limpopo Province is one of the major avocado producing areas in South Africa, and avocado production within the province ranges from smallholder to commercial production. Smallholder avocado producers within the province have a significant role to play, especially if their full potential is unleashed. For smallholder farmers to play such a role they need to be competitive. The concept of competitiveness can be defined as the ability of an industry or firm to compete successfully in order to achieve sustainable growth while earning at least the opportunity cost on resources employed. The main aim of this study was to analyse the determinants of competitiveness of smallholder avocado farmers in the Vhembe District of the Limpopo Province based on the Porter’s Diamond model framework in order to assess the level of competitiveness of farmers and to establish how the farmers can be assisted to reach their full potential. The study was conducted in the Vhembe District Municipality and a sample of 60 farmers was interviewed. SPSS (SPSS 26.0) was used to analyse the data. Three analytical techniques were used in the analysis for this study. Firstly, factor analysis was used to reduce and group the number of variables associated with competitiveness of the farmers. Secondly, profitability analysis through enterprise budgeting was used to categorise the farmers into two groups; competitive and noncompetitive. Thirdly, Logistic regression was used to establish the socio-economic and Porter’s Diamond model determinants that could be linked to the competitiveness of the farmers. From the factor analysis, 5 factors were extracted, namely; “chance”, “government, related and supporting industries”, “factor conditions”, “firm strategy structure and rivalry” and “demand conditions”. From the profitability analysis the farmers were grouped into competitive and non-competitive categories with 22 farmers classified as being competitive and 38 farmers as being non-competitive. From the results of logistic regression, 7 out of 12 hypothesised variables were found to be statistically significant, these were; age of farmer, number of trees planted, related and supporting industries, firm strategy structure and rivalry, chance, demand conditions and factor conditions. Chance was the only variable with a statistically significant v negative influence on the competitiveness of the farmers, this was because factors that were tested for their influence on the competitiveness of the farmers are among others: Crime, HIV/AIDS, fires, frost and floods. Based on the research findings, several policy suggestions were made, these include; mentorship and encouragement of youth participation in farming, provision of agricultural land, capacity building for farmers, government support and stakeholder mobilization, specialized extension service and formation of cooperatives as well as encouraging commercialization.
3

Ultra-low temperature shipping and cold chain management of 'fuerte' avocados (Persea americana Mill.) grown in the KwaZulu-Natal Midlands.

Lutge, Andre. 15 November 2013 (has links)
‘Fuerte’ makes up 25% of the avocados exported from South Africa to European markets and requires shipping periods of up to 28 days and a correctly managed cold chain. A temperature of 5.5°C and expensive CA and 1-MCP treatments are currently used to delay ripening over this lengthy cold chain; however, fruit still appear on the European market showing signs of softening and physiological disorders. Increased competition on the global market and the disadvantage of a particularly long distance to the European market has challenged the South African export industry. These challenges have necessitated improved road and sea transport logistics, co-ordination with producing countries which supply fruit to European markets over similar periods as South Africa, and research into ultra-low temperature storage to possibly enable future access to new lucrative markets in the USA, China and Japan. It is also known that there are various ‘weak links’ in this cold chain and that cold chain breaks are detrimental to fruit quality, but further research into the negative effects of these cold chain breaks at ultra-low temperatures was needed. Thus, the objective of the study was to determine the potential for shipping ‘Fuerte’ avocados at temperatures of 2°C as well as determining the effects of cold chain breaks on fruit quality, throughout the growing season and possibly for an extended period of 56 days. ‘Fuerte’ avocados were harvested at three different maturity stages reflecting early-, mid- and late-season fruit, with moisture contents of 74%, 68% and 63%, respectively. Fruit were stored at 2°C or 5.5°C, treated with 1-MCP and waxed. Additionally cold chain breaks (24 hour delay and break at 14 days) were implemented. Fruit softening, mass loss, days-to-ripening, external and internal quality as well as antioxidant levels and total sugar levels were determined. The first aim was to determine whether a lower than currently used storage temperature could be a successful alternative to 1-MCP use. A storage temperature of 2°C provided good internal quality as well as reduced mass loss and fruit softening, which is related to the slightly reduced use of C7 sugars at 2°C compared with 5.5°C. Although the overall occurrence of external chilling injury was relatively low, 2°C storage caused a notably higher occurrence of external chilling injury than 5.5°C storage, particularly early in the season, but extended the days-to-ripening. Unfortunately, no correlation between the anti-oxidants in the exocarp and external damage was found. Waxing significantly reduced the external damage on fruit stored at 2°C, so much so, that the treatment combinations of ‘2°C, no 1-MCP, waxed’ showed no external chilling injury throughout the season. Further, waxing fruit at 2°C could eliminate the need for 1-MCP, delivering a product of the required shelf-life and quality. Best results were achieved for mid-season fruit stored at 2°C. Late-season fruit would potentially be the most profitable to store at this low temperature, however, body rots (anthracnose and stem-end rot) were more common in the late-season. Storage at 2°C can therefore maintain the internal quality over a storage period of 28 days and be a potential alternative to 1-MCP use as the season progresses. The effect of cold chain breaks on fruit quality was then investigated and showed that both a delay and a break in the cold chain increased mass loss and fruit softening, reduced days-to-ripening and increased external chilling injury, especially early in the season. Water loss was the main contributor to the decreased fruit quality which resulted from the delay in cooling, increasing external damage significantly, particularly early in the season. The break at 14 days had a marked effect on physiological activity of fruit during storage, seen mainly in the increased metabolic activity, resulting in increased fruit softening and water loss during storage and a decrease in C7 sugars and thus shelf-life, particularly for fruit stored at 5.5°C. Importantly, 1-MCP use and storage at 2°C reduced the effects of cold chain breaks with respect to fruit softening, however, lowering the storage temperature had a greater negating effect than 1-MCP and could be a successful alternative to the use of 1-MCP. The internal quality throughout the experiment was very good, with few internal disorders and no significant treatment effects on internal quality and C7 sugar concentrations. Overall, a break in the cold chain, before and during cold storage, resulted in a marked reduction in fruit quality. The storage temperature of 5.5°C should not be used for a 56 day storage period as it resulted in significant fruit softening during storage, even when 1-MCP was used, and resulted in significantly more external chilling injury in the mid- and late-season than at 2°C. Storage of 1-MCP treated, waxed fruit at 2°C, resulted in the best shelf-life and fruit quality, particularly mid-season fruit which had negligible external chilling injury and 100% sound fruit. Early-season fruit suffered significant external chilling injury at 2°C and late-season fruit had the highest body-rots and internal disorders at this storage temperature. Although mid-season fruit could be successfully stored at 2°C for 56 days, the use of a 56 day storage period is not recommended as a practical storage period, due to the high risk of external damage, particularly if maturity levels are not optimum and trees and fruit are not of the highest quality. Overall this thesis has shown that 1-MCP treatment can play an important role early in the season when fruit are susceptible to external damage, however, storage at 2°C results in good quality fruit and, when used in conjunction with waxing, appears to be a viable alternative to the use of 1-MCP, particularly later in the season. Further, the negative effects of cold chain breaks on fruit quality have been demonstrated and, importantly, the storage temperature of 2°C negates the fruit softening effects of these breaks, even if 1-MCP is not used. / Thesis (M.Sc.Agric.)-University of KwaZulu-Natal, Pietermaritzburg, 2011.
4

Effect of systemic resistance inducers applied pre- and postharvest for the development of a potential control of colletotrichum Gloeosporioides on Persea Americana (Mill.) CV 'Fuerte'.

Bosse, Ronelle Joy. January 2012 (has links)
Avocados are one of the major food sources in tropical and subtropical regions and are an important horticultural crop in South Africa. Avocados are exported over long distances and may have storage times of up to 30 or more days at temperatures of about 5.5oC. This procedure increases the risk of poor fruit quality, including physiological disorders, early softening and postharvest disease incidence. A major component of the postharvest diseases is Anthracnose caused by Colletotrichum gloeosporioides. Anthracnose infects unripe fruit and once infected, the fungus remains dormant in the fruit until ripening begins. This leads to a problem for producers and packers, as the presence of the disease cannot be detected on the pack line, and fruit is not removed. Anthracnose control is normally done through pre-harvest treatment with copper-based fungicides. While effective such treatment needs to be repeated frequently, resulting in copper residues on the avocados. The study was conducted to investigate the effects of phosphoric acid and potassium silicate on known antifungal compounds and critical enzymes of the pathways elemental for systemic resistance inducers, so as to evaluate the potential for using them as alternatives to or in conjunction with, copper fungicides in the control of Anthracnose in avocado fruit. The study included storage temperature and time variations, to take account of the logistics in shipping avocado fruit to distant markets. Pre- and postharvest applications of phosphoric acid and potassium silicate were used, and after harvest, fruit were either ripened at room temperature (22oC) without storage or stored for 28 days at temperatures of 5.5oC or 2oC before analysis. Concentrations of phenolics, activity of the enzyme phenylalanine ammonia lyase (PAL) and a known antifungal diene were determined in the fruit exocarp. Pre-harvest treatments of phosphoric acid showed that the highest phenolic concentration was found in fruit harvested 14 days after application for fruit stored at room temperature. For fruit stored at 5.5°C it was seen that as fruit softened, phenolic concentrations increased compared with hard fruit immediately after storage, with the highest increase noted for fruit harvested 7 days after application. When comparing the three storage temperatures, phenolic concentrations were enhanced most when fruit was stored at 2°C. Postharvest treatments showed a significant increase in phenolic concentrations for potassium silicate treated fruit stored at room temperature and 2°C when determined immediately after storage. Fruit stored at 5.5°C showed an increase in phenolic concentrations as it became softer. When considering PAL enzyme activity, it was found that postharvest treatments of both potassium silicate and phosphoric acid influenced enzyme activity, with potassium silicate having greater effects. Similarly, an increase in PAL activity was noted in the pre-harvest phosphoric acid treatment harvested 14 days after application for fruit ripened immediately as well as fruit stored at 5.5°C. Fruit stored at 2°C showed the highest PAL activity for fruit harvested 7 days after application. No results were obtained in the analysis of antifungal compounds for both pre- and postharvest treatments. However, it is suggested that the antifungal diene could follow similar trends to those found for phenolics. It is concluded that applications of both phosphoric acid and potassium silicate do create changes in phenolic concentrations and the activity of the enzyme PAL which is involved in the synthesis of phenolic compounds known to possess antifungal properties. It is therefore possible that phosphoric acid and potassium silicate may be used as part of an integrated programme for Anthracnose control, and should be tested as potential alternatives for high volume copper-based fungicides. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.
5

The use of cover crops to increase yield and reduce pest pressure in a commercial avocado orchard at Levubu, Limpopo Province

Nengovhela, Ndoweni Mary 13 August 2020 (has links)
MENVSC / Department of Ecology and Resource Management / The study investigated the impact of cover crops (Medicago sativa, Lotus corniculatus, Trifolium pratense, Melilotus alba and Phacelia tanacetifolia), bare soil and natural ground cover on pest and beneficial arthropods, soil health, crop yield, pest damage and weed suppression in avocado orchards. The trial plots were sited within established commercial avocado orchards with trees of similar cultivar (‘Hass’), soil-type and age, located in Levubu, Limpopo, South Africa. Mixtures of cover crops were planted in the alleys of avocado orchards and the effects were compared to that of a control (other half of the orchard). Mechanical clearing of vegetation in half of the alleys of different avocado orchards were compared to the other half that was left undisturbed. Data were collected during the flowering and fruit set stages of the avocado trees in the months of September - November 2019. Results revealed that there was higher abundance and diversity of flowering plants in the orchard alleys of the cover crop treatment compared to the control comprising of natural vegetation. Cover crops had a significantly positive effect on the soil health of the orchard but little or no effect on beneficial arthropods within the orchard nor any positive effect on the pests of avocados. However, the number of thrips scouted on the fruit were significantly less where cover crops were established. Avocado scale infection rates were also significantly lower where cover crops were established. There were significantly less arthropods, and specifically pests, pollinators and herbivores where the topsoil was removed mechanically. The yield resulting from the orchard half where cover crops were established were significantly higher. More research still needs to be done about the use, management and impact of cover cropping on not only commercial avocado orchards but on other fruit crops. This study shows good evidence for the benefits for using cover crops and the negative effects in having no vegetation cover in the orchards. / NRF
6

Factors affecting mesocarp discolouration severity in 'Pinkerton' avocados (Persea americana MILL.)

Van Rooyen, Zelda. January 2005 (has links)
The susceptibility of the 'Pinkerton' avocado cultivar to mesocarp discolouration, after storage, has seriously threatened its export from South Africa. This disorder has proven to be complex, requiring a better understanding of the fruit's physiology. The purposes of this study were to identify the role of pre- and postharvest factors, or their interactions, in the development of the problem. This was done by obtaining fruit from several production areas of varying mesocarp discolouration histories (referred to as "high", "medium" or "Iow risk" areas) during the 2000 and 2001 seasons. Fruit were stored at 8, 5.5 and 2°C for 30 days, as well as ambient (20°C). Evaluations of fruit quality were made before and after storage, as well as after softening. Once removed from storage the weight loss (during storage) was determined, and fruit firmness and carbon dioxide (C02) production rates monitored daily. It was found that temperatures below the recommended shipping temperature of 5.5°C, i.e. 2°C, produced the best internal fruit quality. This was supported by the membrane integrity studies that showed less membrane stability at the warmer storage temperature of 8°C. Furthermore, remained hard during storage and subsequently had an extended shelf life. Fruit origin was also found to play a major role in browning potential, with discolouration being consistently more severe in fruit from "high risk" areas and increasing in severity as the season progressed. The rate of CO2 production was found to follow a similar trend, with rates increasing as the season progressed, and also being slightly higher in fruit from "high risk" areas. The higher CO2 production rates were thought to be related to a decrease in membrane integrity as the season progressed. While storage temperature was not found to have a significant effect on the rate of CO2 production after storage, it did affect the time taken to reach the maximum rate, with fruit stored at 2°C taking longer. Biochemical analyses to determine the concentration of total phenolics and the activity of the enzyme polyphenol oxidase (PPO) also showed that the potential for browning was initiated by preharvest conditions. While no significant differences were found between growers with regards to total phenol concentrations, the PPO activity was found to be higher in fruit from poor quality areas, and subsequently browning potential was expected to be higher in these fruit. It was, however, found that the potential for browning could be reduced by storing fruit at 2°C, as this decreased the total phenolics concentration. This evidence further emphasized the idea that storage at 2°C could be highly advantageous. Fruit mineral analysis showed that certain key elements played a significant role in the severity of mesocarp discolouration, with excessive fruit nitrogen and decreasing copper and manganese concentrations appearing to play major roles. The high fruit nitrogen concentrations were suspected to reflect fruit grown on very vigorous trees, resulting in shoots competing with fruit for available reserves. It is suggested that 'Pinkerton' of a quality acceptable to the market, can be produced by manipulating source:sink relationships, particularly through decreasing the availability of nitrogen, followed by low temperature (24° C) shipping. Future work should concentrate on manipulation of source:sink relationships, to take account of both climatic conditions and leaf to fruit ratios. The evaluation of chlorophyll fluorescence as a tool for predicting mesocarp discolouration potential in 'Pinkerton' proved to be unsuccessful in this study and future studies may require modifications to the current technique. It is suspected that differences in chlorophyll content, for example, between fruit from different origins, will have to be taken into account when interpreting results. The success of using 2°C storage to improve the internal quality on 'Pinkerton' fruit prompted further studies, during 2004, to ensure that the development of external chilling injury would not decrease the marketability of the cultivar. Low temperature conditioning treatments, prior to storage, proved to be highly successful in reducing the development of external chilling injury, thus further improving fruit quality as a whole. Preconditioning treatments consisted of fruit that were kept at either 10°C, 15°C or 20°C for 1 or 2 days before being placed into storage for 30 days at 2°C or 5.5°C. All preconditioning treatments were compared to fruit that were placed directly into storage. The effect of fruit packaging on moisture loss (as determined by weight loss) and chilling injury was also investigated using unwaxed fruit, commercially waxed and unwaxed fruit individually sealed in micro-perforated polypropylene bags with an anti-mist coating on the inside (polybags). Holding 'Pinkerton' fruit, regardless of packaging treatment, at 10°C for 2 days prior to storage at 2°C or 5.5°C significantly decreased the severity of external chilling injury. The use of polybags during preconditioning and storage showed potential in further reducing the development of external chilling injury, although the higher incidence of fungal infections in these fruit needs to be addressed. The determination of proline concentrations in fruit exocarp tissue after storage was helpful in determining the level of stress experienced by fruit that were subjected to different packaging and preconditioning treatments. In this study waxed fruit subjected to 1 d preconditioning at 10°C, 15°C or 20°C or placed directly into storage at 2°C showed very high proline concentrations and also displayed more severe external chilling injury, despite unwaxed fruit losing more weight during these treatments. The role of moisture loss thus needs further investigation. The thickness and method of wax application was thought to play an important role in the higher external chilling injury ratings in this study as waxed fruit often developed chilling injury symptoms around the lenticels and it was suspected that either the lenticels were damaged by the brushes used to apply the wax or that the lenticels became clogged thus resulting in reduced gaseous exchange. Nevertheless, the success of low temperature conditioning in reducing external chilling injury, while maintaining sound internal quality, may enable storage temperatures to be dropped even further, thus enabling South Africa to export avocados to countries that require a cold disinfestation period prior to entry to eliminate quarantine pests (e.g. fruit fly). / Thesis (Ph.D.Agric.)-University of KwaZulu-Natal, Pietermaritzburg, 2005.

Page generated in 0.0508 seconds