Spelling suggestions: "subject:"axial atrength"" "subject:"axial 1strength""
1 |
Effects of Support Fluid Type on Concrete Integrity and Durability in Drilled ShaftsMobley, Sarah J. 02 July 2019 (has links)
Until recently, concrete flow in tremie-placed drilled shafts has been mischaracterized as rising uniformly with laitance formation occurring only at the top of the rising concrete in the shaft. In actuality, concrete first fills a portion of the reinforcement cage to a sufficient height to promote radial flow into the cover region. Depending on support fluid type, the radial flow can produce laitance-filled creases/channels projecting the reinforcing cage configuration to the side of shaft surface. The flow pattern (and creases) can affect filter cake thickness, cover quality and propensity for corrosion. This research examines 52 tremie-placed laboratory drilled shaft specimens constructed using bentonite, polymer or natural support fluid to identify correlations between support fluid type and laitance channel formation. The extent of the laitance channel effect was quantified with surface texture, corrosion potential, and strength distribution methods. A direct correlation between the use of bentonite support fluid and laitance channel formation was identified which showed a high propensity for corrosion and lower concrete strengths.
|
2 |
Experimental study on concrete filled square hollow sectionsLam, Dennis, Williams, C.A. January 2004 (has links)
A series of tests was performed to consider the behaviour of short composite columns under axial compressive loading, covering a range of S275 and S355 grade steel square hollow section filled with normal and high strength concrete. The interaction between the steel and the concrete component is considered and the results show that concrete shrinkage has an effect on the axial strength of the column. Comparisons between Eurocode 4, ACI-318 and the Australian Standards with the findings of this research were made. Result showed the equation used by the ACI-318 and the proposed Australian Standards gave better predication for the axial capacity of concrete filled SHS columns than the Eurocode 4.
|
3 |
SHORT TERM CHARACTERISTICS AND ENVIRONMENTAL AGING OF BIO-RESIN GFRP TESTED IN TENSION AND FOR CONFINEMENT OF CONCRETE CYLINDERSEldridge, AMANDA 26 August 2013 (has links)
Conventional fiber reinforced polymers (FRPs) require polymers such as epoxies that are not biodegradable, which have a significant impact on the environment. The first phase of the thesis aims at replacing conventional polymers with sustainable bio-polymers. The tensile mechanical properties of glass-FRP (GFRP) laminates using two types of organic furfuryl alcohol bio-resins extracted from renewable resources, such as corncobs, were investigated. Results are compared to control specimens fabricated using conventional epoxy resin. It was shown that by careful selection of viscosity of bio-resin, and type and dosage of catalyst, similar mechanical properties to epoxy-GFRP can be achieved.
The second and third phases consisted of durability testing of the bio-resin GFRP. A total of 160 tension coupons and 81 unconfined and confined concrete cylinders wrapped with bio-resin-GFRP were studied. Conditioning was achieved by immersion of the specimens in saline solutions with 3% salt concentration, at 23, 40 and 55 degrees Celcius, for up to 300 days. Specimens were compared to epoxy-GFRP specimens aged in the same environment. Deterioration was quantified by tensile testing of the coupons and compression testing of the cylinders at various stages of exposure. The bio-resin-GFRP showed 33% less tensile strength retention than the epoxy-GFRP. The epoxy-GFRP and bio-resin-GFRP wrapped cylinders had the same un-aged confined axial compressive strength (fcc’), essentially a strengthening ratio (fcc’/fc’) of 2.24. After 300 days, the (fcc’/fc’) ratio retentions for the bio-resin-GFRP was 73% at all temperatures. Using the Arrhenius model, it was predicted that 61% retention in tensile strength of the bio-resin-GFRP and 65% retention of the compressive strength of wrapped cylinders would occur after 100 years in an environment with a mean annual temperatures of 10 degrees Celcius. / Thesis (Master, Civil Engineering) -- Queen's University, 2013-08-24 00:02:25.683
|
Page generated in 0.0509 seconds