• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solutions For Plane Strain And Axisymmetric Geomechanics Problems With Lower Bound Finite Elements Limit Analysis

Khatri, Vishwas N 03 1900 (has links)
The present thesis illustrates the application of the lower bound limit analysis in combination with finite elements and linear programming for obtaining the numerical solutions for various plane strain and axisymmetric stability problems in geomechanics. For the different plane strain problems dealt in the thesis, the existing formulation from the literature with suitable amendments, wherever required, was used. On the other hand for various axisymmetric problems, the available plane strain methodology was modified and a new formulation is proposed. In comparison to the plane strain analysis, the proposed axisymmetric formulation requires only three additional linear constraints to incorporate the presence of the hoop/circumferential stress (σθ). Several axisymmetric geotechnical stability problems are solved successfully to demonstrate the applicability of the proposed formulation. In the entire thesis, three noded triangular elements are used for carrying out the analysis. The nodal stresses are treated as basic unknowns and the stress discontinuities are employed along the interfaces of all the elements. To ensure that the finite element formulation leads to a linear programming problem, the Mohr-Coulomb yield surface is approximated by a polygon inscribed to the parent yield surface. For solving different problems, computer programs are developed in ‘MATLAB’. The variation of the bearing capacity factor Nγ with footing-soil interface roughness angle δ is obtained for different soil friction angles. The magnitude of Nγ is found to increase extensively with an increase in δ. With respect to variation in δ, the obtained values of Nγ were found to be generally smaller than the results available in literature. The effect of the footing width on the magnitude of Nγ has been examined for both smooth and rough strip footings. An iterative computational procedure is introduced to account for the dependency of φ on the mean normal stress ( σm). Two well defined φ- σm curves from literature, associated with two different relative densities, are being chosen for performing the computational analysis. The magnitude of Nγ is obtained for different footing widths, covering almost the entire range of model and field footing sizes. For a value of the footing width greater than approximately 0.2 m and 0.4 m, for a rough and smooth footing, respectively, the magnitude of Nγ varies almost linearly on a log-log scale. The bearing capacity factors Nc, Nq and Nγ are computed for a circular footing both with smooth and rough footing interface. The bearing capacity factors for a rough footing are found to be consistently greater than those with a smooth interface, especially with grater values of soil friction angle (φ). An encouraging comparison between the obtained results and those available from the literature is noted. Bearing capacity factor Nc for axially loaded piles in clays whose cohesion increases linearly with depth has been estimated numerically under undrained (φ = 0) condition. The variation of Nc with embedment ratio is obtained for several rates of the increase of soil cohesion with depth; a special case is also examined when the pile base was placed in the stiff clay stratum overlaid by a soft clay layer. It has been noticed that the magnitude of Nc reaches almost a constant value for embedment ratio approximately greater than unity. The bearing capacity factor Nγ has been computed for a rough conical footing placed over horizontal ground surface. The variation of Nγ with the cone apex (interior) angle (β), in a range of 30º - 180º, is obtained for different values of friction angle ( φ). For φ< 30º, the magnitude of Nγ is found to decrease continuously with an increase in β from 30º to 180º. On the other hand, for φ > 30º , the minimum magnitude of Nγ is found to occur generally between β = 120 and β = 150º. In all the cases, it has been noticed that the magnitude of Nγ becomes maximum for β = 30o. The vertical uplift resistance of circular plate anchors, embedded horizontally in a clayey stratum whose cohesion increases linearly with depth, has been obtained under undrained ( φ = 0) condition. The variation of the uplift factor (Fc) with changes in the embedment ratio (H/B) has been computed for several rates of the increase of soil cohesion with depth. It has been noted that in all the cases, the magnitude of Fc increases continuously with H/B up to a certain value of Hcr/B beyond which the uplift factor becomes essentially constant. The results obtained from the analysis are noted to compare quite well with those published in literature. From the investigation reported in this thesis, it is expected that the proposed axisymmetric formulation will be quite useful for solving various axisymmetric geotechnical stability problem in a rapid manner. The available plane strain formulation has also been found to yield quite satisfactory solutions even for a problem where the soil friction angle depends on the state of stress at a point.
2

Finite Element Limit Analysis for Solving Different Axisymmetric Stability Problems in Geomechanics : Formulations and Solutions

Chakraborty, Manash January 2015 (has links) (PDF)
Limit analysis is a very powerful tool to find accurate solutions of several geotechnical stability problems. This analysis is based on the theory of the plasticity and it provides two limiting solutions within lower and upper bounds. With the advancement of the finite elements and different robust optimization techniques, the numerical limit analysis approach in association with finite elements is becoming quite popular to assess the stability of various complicated structures. The present thesis deals with the formulations and the implementation of the finite element limit analysis to obtain the solutions of different geotechnical axisymmetric stability problems. The objectives of the present thesis are twofold: (a) developing limit analysis formulations in conjunction with linear and nonlinear optimizations for solving axisymmetric stability problems related with soil and rock mechanics, and then (b) implementing these axisymmetric formulations for solving various important axisymmetric stability problems in geomechanics. Three noded linear triangular elements have been used throughout the thesis. In order to solve the different problems, the associated computer programs have been written in MATLAB. With reference to the first objective of the thesis, the existing finite element lower bound axisymmetric formulation with linear programming has been presented. A new technique has also been proposed for solving an axisymmetric geomechanics stability problem by employing an upper bound limit analysis in combination with finite elements and linear programming. The method is based on the application of the von-Karman hypothesis to fix the constraints associated with the magnitude of the circumferential stress (), and finally the method involves only the nodal velocities as the basic unknown variables. The required computational effort becomes only marginally greater than that needed for an equivalent plane strain problem. The proposed methodology has been found to be computationally quite efficient. A new lower bound axisymmetric limit analysis formulation, by using two dimensional finite elements, the three dimensional Mohr-Coulomb (MC) yield criterion, and nonlinear optimization has also been presented for solving different axisymmetric stability problems in geomechanics. The nonlinear optimization was carried out by employing an interior point method based on the logarithmic barrier function. The yield surface was smoothened (i) by removing the tip singularity at the apex of the pyramid in the meridian plane, and (ii) by eliminating the stress discontinuities at the corners of the yield hexagon in the plane. No inherent assumption concerning with the hoop stress needs to be made in this formulation. The Drucker-Prager (DP) yield criterion was also used for computing the lower bound axisymmetric collapse load. The advantage of using the DP yield criterion is that it does not exhibit any singularity in the plane. A new proposal has also been given to simulate the DP yield cone with the MC hexagonal yield pyramid. The generalized Hoek-Brown (HB) yield criterion has also been used. This criterion has been smoothened both in the meridian and  planes and a new formulation is prescribed for obtaining the lower bound axisymmetric problems in rock media in combination with finite elements and nonlinear optimization. With reference to the second objective, a few important axisymmetric stability problems in soil mechanics associated with footings and excavations have been solved in the present thesis. In all these problems, except that of a flat circular footing lying over either homogeneous soil or rock media, it is assumed that the medium is governed by the MC failure criterion and it follows an associated flow rule. For determining the collapse loads for a circular footing over homogenous soil and rock media, the problem has been solved with the usage of Drucker-Prager, Mohr-Coulomb and Hoek-Brown criteria. The bearing capacity of a circular footing lying over fully cohesive strata, with an inclusion of a sand layer is evaluated. The effects of the thickness and internal friction angle of the sand layer () on the bearing capacity have been examined for different combinations of cu/(b) and q; where (i) cu defines the undrained shear strength, (ii)  is the unit weight of sand, (iii) b corresponds to the footing radius, and (iv) q is the surcharge pressure. The results have been presented in the form of a ratio () of the bearing capacities with an insertion of the sand layer to that for a footing lying directly over clayey strata. It is noted that an introduction of a layer of medium dense to dense sand over soft clay improves considerably the bearing capacity of the foundation. The improvement in the bearing capacity increases continuously (i) with decreases in cu/(b), and (ii) increases in  and q/(b). The bearing capacity factors, Nc, Nq and N, for a conical footing are obtained in a bound form for a wide range of the values of cone apex angle () and with  = 0, 0.5 and . The bearing capacity factors for a perfectly rough ( = conical footing generally increase with a decrease in . On contrary for  = 0, the factors Nc and Nq reduce gradually with a decrease in . For  = 0, the factor N for  ≥ 35o becomes minimum for  approximately equal to 90o. For  = 0, the factor N for  ≤ 30o, like in the case of  = , generally reduces with an increase in . It has also been intended to compute the bearing capacity factors Nc, Nq and N, for smooth and rough ring footing for different combinations of ri/ro and ; where ri and ro refer to inner and outer radii of the ring, respectively. It is observed that for a smooth footing, with a given value of ro, the magnitude of the collapse load decreases continuously with an increase in ri. On the other hand, for a rough base, for a given value of ro, hardly any reduction occurs in the magnitude of collapse load up to ri/ro ≈ 0.2, whereas beyond this ri/ro, the magnitude of the collapse load, similar to that of a smooth footing, decreases continuously with an increase in ri/ro. An attempt has also been made to determine the ultimate bearing capacity of a circular footing, placed over a soil mass which is reinforced with horizontal layers of circular reinforcement sheets. For performing the analysis, three different soil media have been separately considered, namely, (i) fully granular, (ii) cohesive frictional, and (iii) fully cohesive with an additional provision to account for an increase of cohesion with depth. The reinforcement sheets are assumed to be structurally strong to resist axial tension but without having any resistance to bending; such an approximation usually holds good for geogrid sheets. The shear failure between the reinforcement sheet and adjoining soil mass has been considered. The increase in the magnitudes of the bearing capacity factors (Nc and N) with an inclusion of the reinforcement has been computed in terms of the efficiency factors c and . The critical positions and corresponding optimum diameter of the reinforcement sheets, for achieving the maximum bearing capacity, have also been established. The increase in the bearing capacity with an employment of the reinforcement increases continuously with an increase in . The improvement in the bearing capacity becomes quite extensive for two layers of the reinforcements as compared to the single layer of the reinforcement. The stability of an unsupported vertical cylindrical excavation has been assessed. For the purpose of design, stability numbers (Sn) have been generated for both (i) cohesive frictional soils, and (ii) pure cohesive soils with an additional provision to account for linearly increasing cohesion with depth by using a non-dimensional factor m. The variation of Sn with H/b has been established for different values of m and ; where H and b refer to height and radius of the cylindrical excavation. A number of useful observations have been drawn about the variation of the stability number and nodal velocity patterns with changes in H/b,  and m. In the last, by using the smoothened generalized HB yield criterion, the ultimate bearing capacity of a circular footing placed over a rock mass is evaluated in a non-dimensional form for different values of GSI, mi, ci/(b) and q/ci. For validating the results, computations were exclusively performed for a strip footing as well. For the various problems selected in the present thesis, the failure and nodal velocity patterns have been examined. The results obtained from the analysis have been thoroughly compared with that reported from literature. It is expected that the various design charts presented here will be useful for the practicing engineers. The formulations given in the thesis can also be further used for solving various axisymmetric stability problems in geomechanics.

Page generated in 0.0731 seconds