• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

How are pancreatic tumors innervated? / Les tumeurs pancréatiques sont elles innervées?

Nguyen, Thi Trang Huyen 21 December 2017 (has links)
L’adénocarcinome canalaire du pancréas (PDAC) est un des cancers les plus agressifs avec un taux de survie à 5 ans de moins de 5 %. Une des raisons est l’absence de traitement thérapeutique efficace. Des efforts afin d’identifier de nouvelles cibles pour le traitement du PDAC sont donc nécessaires. Il a été démontré que la dénervation du pancréas régule la progression des PDAC dans des modèles murins. De plus, on a rapporté que les axones du système nerveux périphérique (SNP) innervent les tumeurs pancréatiques, mais l'identité précise des fibres infiltrant la tumeur est inconnue.Ici, nous avons caractérisé le remodelage des principales divisions du SNP, y compris les systèmes autonomes et sensoriels, dans des modèles murins qui récapitulent la maladie humaine. Nous avons aussi commencé à caractériser l'innervation des PDAC dans des échantillons humains. Nous avons observé une augmentation de la densité des fibres sympathiques positives pour la tyrosine hydroxylase (TH) dans les lésions pré-tumorales du pancréas, alors qu'une forte densité de fibres sensorielles positives pour le peptide lié au gène de la calcitonine (CGRP) a été observée dans les PDAC. Fait intéressant, alors que dans tissus normaux les axones sympathiques et sensoriels sont principalement associés aux vaisseaux sanguins, ils sont majoritairement isolés dans les lésions pré-tumorales et les PDAC. Ces données suggèrent que la plasticité axonale survient aux stades précoces du développement tumoral pour les fibres sympathiques et à un stade plus tardif pour les fibres sensorielles. Ce travail suggère de nouvelles cibles potentielles pour le traitement des PDAC. / Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with 5-year survival rate of less than 5%. One reason to explain this poor outcome is that there has been no effective therapeutic treatment for PDAC patients. Thus, efforts to identify novel targets for PDAC treatment are required. Denervation of the pancreas has been shown to regulate PDAC progression in murine models. In addition, axons of the peripheral nervous system (PNS) have been reported to innervate pancreatic tumors, but the precise identity of the tumor-infiltrating fibers is unknown. Here we characterized the remodeling of the main divisions of the PNS, including autonomic and sensory systems, in mouse models, which recapitulate the human disease. We also started to characterize the innervation of human PDAC samples. We observed an increased density of tyrosine hydroxylase (TH)-positive sympathetic fibers in pre-tumoral lesions of the pancreas, while a high density of calcitonin gene-related peptide (CGRP)-positive sensory fibers was seen within PDAC. Interestingly, whereas in the normal tissues TH+ and CGRP+ axons were mostly associated to blood vessels, they were mainly isolated in lesions and PDAC. These data suggest that axonal plasticity occurs at the early stage of tumor development for sympathetic fibers and at the late stage for sensory fibers. This work suggests potential novel targets for the treatment of PDAC.
2

Molekulare Analyse der Nogo Expression und der Myelinisierung im Hippocampus während der Entwicklung und nach Läsion

Meier, Susan 21 February 2006 (has links)
Im Gegensatz zum peripheren Nervensystem (PNS) ist die Regenerationsfähigkeit im adulten zentralen Nervensystem (ZNS) von Vertebraten sehr eingeschränkt. Diese eingeschrängte Regenerationsfähigkeit wird im Wesentlichen durch das Vorhandensein von Myelin im adulten ZNS determiniert. Einerseits ist dieses Lipid für die Stabilisierung und Ernährung von Axonen sowie für die schnelle Reizweiterleitung unbedingt notwendig, andererseits stellt es den größten Inhibitor axonaler Regeneration dar. Myelin ist außerdem Zielstruktur diverser ZNS Pathologien, wie z.B. der Multiplen Sklerose. Für das Verständnis dieser Pathologien sowie der auswachsinhibitorischen Wirkung von Myelin wurde der Hippocampus als eine der plastischten ZNS Regionen gewählt. Dazu waren genaue Kenntnisse der Myeloarchitektur dieses Gebietes notwendig. Nach Etablierung einer zuverlässigen Detektierung für Myelin konnten in der vorliegenden Arbeit detailliert Myelinisierungsvorgänge im sich entwickelnden, im adulten und im deafferenzierten Hippocampus der Ratte analysiert werden. Während der Entwicklung erreichen die ersten entorhinale Axone den Hippocampus bereits am embryonal Tag 17 (E17); Myelin kann jedoch erst am postnatal Tag 17 (P17) lichtmikrokopisch nachgewiesen werden. Die Anzahl myelinisierter Fasern erreicht um den P25 ein Verteilungsmuster, welches dem von adulten Tieren gleicht. Nach Entorhinaler Cortex Läsion (ECL), bei der die Durchtrennung des Tractus perforans (PP) eine Denervation des Hippocampus bewirkt, kommt es zu einem langanhaltenden Verlust von Myelin. Zehn Tage nach Läsion (10 dal), also zum Zeitpunkt maximaler Aussprossung (Sprouting), kommt es zu einem Wiederkehren myelinisierter Fasern. Mehrere myelin-assoziierte Proteine, mit wachstumshemmenden Eigenschaften sind bekannt, wie z.B. die Familie der Nogo Gene (Nogo; englisch, kein Durchkommen). Diese werden ganz entschieden für den Verlust der Regenerationsfähigkeit des adulten ZNS verantwortlich gemacht. In der vorliegenden Arbeit wird die Expression der drei Nogo Gene (Nogo-A, -B, - C) und deren Rezeptor (Ng66R) während der postnatalen Entwicklung, im adulten ZNS sowie nach Läsion beschrieben. Ein erster überraschender Befund war die neuronale Expression der Nogos, die bisher nur in Oligodendrocyten nachgewiesen worden war. Zu einem Zeitpunkt, an dem entorhinale Fasern bereits in den Hippocampus eingewachsen, aber noch nicht myelinisiert sind (P0), wird Nogo-A, -B und Ng66R mRNA mit Ausnahme der Körnerzellschicht des Gyrus dentatus in allen Zellschichten des sich entwickelnden Hippocampus detektiert. Nogo-C und myelin basic protein (MBP) mRNA, werden erst am P15 expremiert, zu einem Zeitpunkt also, an dem myelinisierte Fasern erstmalig im Hippocampus auftreten. MBP wird ausschließlich in glialen, Nogo-C hingegen hauptsächlich in neuronalen Zellen exprimiert. Nach Deafferenzierung zeigt sich eine dynamische und Isoform- spezifische Regulation aller Nogo Transkripte. So zeigen die als erste von der Deafferenzierung betroffenen Körnerzellen zu Beginn der Waller`schen Degeneration sowie der neuronalen und glialen Antwort, eine starke Erhöhung aller Nogo Transkripte. Zum Zeitpunkt der maximalen Aussprossung kam es zu einem signifikanten Abfall der Nogo-C und Ng66R mRNA Expression, währendessen Nogo-A und Nogo-B bereits wieder das Kontrollniveau erreicht hatten. Vor allem im contralateralen Hippocampus, dem Hauptquellgebiet sproutender Fasern, imponierte die Runterregulation von Ng66R mRNA und zeigte erst nach Abschluß von axonalen Sproutingprozessen und der Synapsenformation wieder vergleichbare Werte mit den Kontrolltieren. Diese Korrelation der erniedrigten Ng66R Expression im contralateralen Hippocampus und dem axonalen Einwachsen in den deafferenzierten Hippocampus, läßt eine reduzierte axonale Ansprechbarkeit auf den Neuriten-Auswachshemmer Nogo-A vermuten, da bekannt ist, dass Axone, die kein Ng66R exprimieren, nicht durch die Nogo Gene im Wachstum gehemmt werden. Zusammenfassend kommt es während der Entwicklung und in der Reorganisationsphase zu einer spezifischen und geordneten Myelinisierung im Hippocampus. Die neuronale Expression von Nogo- A, -B und -C in einer so plastischen ZNS- Region unterstützt die Hypothese, dass den Nogo- Genen neben der reinen Hemmung von axonalen Auswachsen weitere Funktionen zuzuordnen sind. So scheinen sie vor allem während der Entwicklung und während der Stabilisierungsphase der hippocampalen Reorganisation eine wichtige Rolle einzunehmen. Die hier dargestellten Daten zeigen auf, dass vor einem therapeutischen Einsatz von Nogo- Antagonisten nach Schädigung deren Verträglichkeit bzw. unerwünschte Nebeneffekte ausgeschlossen werden müssen. / Compared to the peripheral neuronal system (PNS) the reorganisation capacity in the adult central neuronal system (CNS) is highly restricted. One important reason for the lack of reorganisation is the existence of myelin in the CNS. Myelin is crucial for the stabilization of axonal projections in the developing and adult mammalian brain. However, myelin components also act as a non-permissive and repellent substrate of outgrowing axons. In these thesis the appearance of mature, fully myelinated axons during hippocampal development and following entorhinal cortex lesion with the myelin-specific marker Black Gold is reported. Althrough entorhinal axons enter the hippocampal formation at the embryonic day 17, light and ultrastructural analysis revealed that mature myelinated fibres in the hippocampus occur in the second postnatal week. During postnatal development, increasing numbers of myelinated fibers appear and the distribution of myelinated fibers at postnatal day 25 was similar to that found in the adult. After entorhinal cortex lesion, a specific anterograde denervation in the hippocampus takes place, accompanied by a long- lasting loss of myelin. Quantitative analysis of myelin and myelin breakdown products at different time points after lesion revealed a temporally close correlation to the degeneration and reorganisation phases in the hippocampus. In conclusion, it could be shown that the appearance of mature axons in the hippocampus is temporally regulated during development. Reappearing mature axons were found in the hippocampus following axonal sprouting. Various myelin-associated proteins, with neurite inhibition properties are known. One is the family of Nogo genes (no go). They are distinctly responsible for the lack of reorganisation. In these thesis the expression pattern of Nogo-A, Nogo-B, Nogo-C and Nogo-66 receptor (Ng66R) mRNA during hippocampal development and lesion induced axonal sprouting is reported. The first surprising result was the neuronal expression of all Nogos, who were supposed to be only expressed by oligodendrocytes. Nogo-A, Nogo-B and Ng66R transcrips preceded the process of myelination and were highly expressed at postnatal day zero (P0) in all principal hippocampal cell layers, with the exception of dentate granule cells. Only a slight Nogo-C expression was found at P0 in the principal cell layers of the hippocampus. During adulthood, all Nogo splice variants and their receptor were expressed in the neuronal cell layers of the hippocampus, in contrast to the myelin basic protein mRNA expression pattern, which revealed a neuronal source of Nogo gene expression in addition to oligodendrocytes. After hippocampal denervation, the Nogo genes showed an isoform-specific temporal regulation. All Nogo genes were strongly regulated in the hippocampal cell layers, wheras the Ng66R transcrips showed a significant increase in the contralateral cortex. These data could be confirmed on protein levels. Futhermore, Nogo-A expression was up-regulated after kainat- induced seizure. These data show that neurons express Nogo genes with a clearly distinguishable pattern during development. This expression is further dynamically and isoform-specifically altered after lesioning during the early phase of structural rearrangements. Thus, these results indicate a role for Nogo-A, -B and –C during development and during stabilisation phase of hippocampal reorganization. Taken together with these data, the findings that neurons in a highly plastic brain region express Nogo genes supports the hypothesis that Nogo may function beyond its known neuronal growth inhibition activity in shaping neuronal circuits.
3

Impact de l’activité postsynaptique sur le développement et le maintien de la jonction neuromusculaire de C. elegans / Impact of postsynaptic activity on the development and maintenance of the neuromuscular junction of C. elegans

Weinreb, Alexis 11 September 2018 (has links)
Au cours du développement du système nerveux, l'activité des cibles post-synaptiques permet le raffinement du nombre et de la force des connexions neuronales. En employant la jonction neuromusculaire de Caenorhabditis elegans comme système modèle, nous avons étudié deux aspects de la mise en place de ces connexions. D'une part, nous montrons que le nombre de récepteurs présents à la jonction neuromusculaire est contrôlé par l'activité musculaire : une augmentation de l'activation synaptique entraîne une régulation différentielle des trois types de récepteurs présents à la jonction neuromusculaire. D'autre part, nous avons étudié les changements de la morphologie de certains motoneurones de la tête du ver, appelés neurones SAB, en fonction de l’activité musculaire. Une diminution de l’activité musculaire durant une période critique du développement entraîne une surcroissance axonale des neurones SAB. À travers différentes approches, nous avons pu identifier la suppression de la surcroissance axonale dans des mutants où la biosynthèse des neuropeptides est perturbée. Enfin, nous avons mis en évidence que la surcroissance axonale apparait également lors de perturbations plus générales de la physiologie cellulaire, telles qu'un choc thermique ou la surexpression d'un transgène, ce qui suggère que le système SAB est plastique et particulièrement sensible au cours du développement / Throughout nervous system development, activity of the post-synaptic targets can regulate the connectivity of neural networks, affecting both the number and strength of synapses. Using the neuromuscular junction of Caenorhabditis elegans as a model system, we studied two processes displaying such plasticity. First, we show that the number of receptors present at the neuromuscular synapse is regulated by muscle activity: an increase in synaptic activity can lead to a differential regulation of the three types of receptors present at the neuromuscular junction. Second, we studied the activity-dependent morphological changes of one type of motor neurons in the worm’s head, called the SAB neurons. A decrease of muscle activity during a critical developmental phase leads to SAB axonal overgrowth. Using several approaches, we were able to observe suppression of SAB axonal overgrowth in mutants with a disruption of neuropeptides biosynthesis. Finally, we give evidence that axonal overgrowth also occurs following more general disruptions of cell physiology, such as a heat-shock or transgene overexpression, which suggest that the SAB system is plastic and sensitive during development
4

THE ROLE OF PTPs IN REGENERATION FAILURE FOLLOWING SPINAL CORD INJURY

Lang, Bradley Thomas 13 February 2015 (has links)
No description available.

Page generated in 0.083 seconds