Spelling suggestions: "subject:"azimuthal anisotropy"" "subject:"azimuthal aniosotropy""
1 |
Anisotropy of the zone of exhumed continental mantle and the structure of the earliest formed oceanic crust west of IberiaCole, Philip Bruce January 2003 (has links)
No description available.
|
2 |
Azimuthal analysis of hybrid gathersPerez, Anisa Marie 03 September 2009 (has links)
The cross-spread formed by intersecting source and receiver lines, or “hybrid gather” consisting of all common mid-points (CMPs) in a reflection patch defined by the acquisition geometry, has been revived in recent years as a possible solution to the increasing need for ever-improving imaging of 3-D seismic reflection data. These hybrid gathers, however, are currently not widely used in processing. Development of processing procedures for hybrid gathers is needed to further the efficiency of their application. The use of hybrid gathers in processing is justified by their performance as an areal array in attenuating both random and coherent noise from all azimuthal directions. Hybrid gathers also allow for azimuthal filtering to correct for wave propagation effects. Through an azimuthal analysis in an azimuthally anisotropic medium, the effects of structural dip on reflection time can be isolated and separated from pre-stack propagation effects of the media, particularly distortions due to azimuthal anisotropy. A binning strategy is determined for hybrid gathers which best allows for azimuthal anisotropy to be observed and distinguished from structural dip. This allows for improved velocity estimation for imaging and separate analysis of azimuthal variations in propagation properties of subsurface media at an early stage in the processing sequence. The degree and orientation of the anisotropy can then be estimated using a semblance method. / text
|
3 |
Analysis of PS-converted wave seismic data in the presence of azimuthal anisotropyLiu, Weining January 2014 (has links)
Shear-wave splitting and azimuthal variations of seismic attributes are two major anisotropic effects induced by vertically-aligned fractures. They both have influences on seismic data processing and interpretation, and provide information on fracture properties. Azimuthal variations in P-wave data have been intensively studied to improve imaging and obtain fracture parameters. However, azimuthal variations in PS-converted wave seismic data, particularly the velocity variation in PS-converted wave data, have not been well studied. Shear-wave splitting has been frequently used to estimate fracture directions and densities. However, its influence on the azimuthal variations of PS-converted wave data has also lacked a proper analysis. In this thesis, I analyse the anisotropic behaviour of PS-converted wave seismic data in the presence of azimuthal anisotropy, which includes the azimuthal variation of the PSconverted wave and PS-converted wave splitting. First, I demonstrate the robustness of PS-converted wave splitting for fracture characterisation. PS-converted wave seismic data is also influenced by the splitting effect due to its upgoing shear-wave leg. This important feature enables the application of shear-wave splitting analysis to PS-converted wave seismic data. I use synthetic data to show the necessity for separation of the split PS-converted waves. Then I apply the PS-converted wave splitting analysis to Sanhu 3D3C land seismic data. By separation of the fast and slow PS-converted waves and compensation for the time delays, the imaging quality has been improved. Dominant fracture properties obtained from the splitting analysis show a good correlation with the stress-field data. However, this work is accomplished by assuming only one set of vertical fractures in processing a given time window. In future work a specific layer-stripping algorithm could be constructed and applied. . Second, I study azimuthal variations of velocities in PS-converted wave seismic data. It involves two major parts: analysing azimuthal variations of NMO velocities to improve imaging, and examining the sensitivity of azimuthal variations to different fluid saturations. For a layer with HTI anisotropy induced by a set of vertical fractures, seismologists usually analyse the azimuthal behaviour exhibited on the radial and transverse components, on which PS-converted wave data are recorded. However, PS-converted waves also undergo shear-wave splitting, which complicates the azimuthal variations of PS-converted wave data. I demonstrate that it is essential to separate the fast P-SV1 wave from the slow P-SV2 wave, before applying any azimuthal analysis. I derive an equation describing the azimuthal variation in PSconverted wave NMO velocities, which shows the variation can be approximated into an ellipse. Based on this theory, I build a workflow to analyse the azimuthal variations of velocities in PS-converted wave data and apply this workflow to synthetic data. The imaging quality can be improved by using this workflow. Different fluid saturations in fractures have different influences on the azimuthal variations of both P-wave and PS-converted wave data. I perform a numerical study to understand how dry or water-saturated fractures control the azimuthal variations. Through theoretical and synthetic studies, I find that the azimuthal variation of velocities in PS-converted wave data is sensitive to different fluid saturations. By analysing the azimuthal variation, the fracture properties can also be estimated, but results are not as robust as those from PS-converted wave splitting analysis. I find that azimuthal variations of fast P-SV1 and slow P-SV2 waves show in-phase characteristics in dry fractures, but exhibit out-of-phase characteristics in water-saturated fractures. This important feature could open a new application for using PS-converted wave seismic data to distinguish oil-filled fractures from gas-filled fractures. In cases where multiple HTI layers are involved, I have developed a specific layer-stripping method to analyse both azimuthal variations and splitting effects of PS-converted waves. By applying this method to synthetic data, the fracture properties of each HTI layer can be estimated. The analysis of azimuthal variations in PS-converted wave velocities is applied to Daqing 3D3C land data. By using azimuthal velocity models in the PS-converted wave seismic data processing, the imaging quality is improved, especially in the anticline area where intensive fractures are likely to be developed. Furthermore, all fracture information obtained from analysis of azimuthal variations and splitting effects is compared with the stress-field data. The results from splitting analysis show a better correlation with the stress-field study. Finally, it is important to conclude that the analysis of PS-converted wave splitting is a robust method to estimate fracture directions and densities. However, it is not sensitive to different fluid saturations, which limits its application to fractured reservoir characterisation. Azimuthal variations of PS-converted wave seismic data can be analysed to improve imaging quality. Moreover their sensitivity to fluid saturations may provide a new way to discriminate between oil-filled and gas-filled fractures. However, the analysis of azimuthal variations is not as robust as the analysis of splitting effects, and it may require appropriate calibration with other fracture characterisation methods.
|
4 |
Seismotectonics of Botswana: New insights from seismic velocity and anisotropy structure of the upper lithosphere / ボツワナの地震テクトニクス:リソスフェア上部における地震波速度と異方性の構造にもとづく新しい考察MPUANG, Admore Phindani 24 November 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24963号 / 理博第4988号 / 新制||理||1712(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 澁谷 拓郎, 教授 久家 慶子, 教授 大見 士朗 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
5 |
AZIMUTHAL ANISOTROPY IN HEAVY ION COLLISIONSPandit, Yadav 27 November 2012 (has links)
No description available.
|
6 |
Anisotropia azimutal de elétrons de quarks pesados em colisões p-Pb no ALICE / Azimuthal anisotropy of electrons from heavy quarks in p--Pb collisions with ALICEZanoli, Henrique José Correia 14 February 2019 (has links)
Um novo estado, o Plasma Quark-Gluon (QGP), é formado quando a matéria comum formada por hadrons é submetida a condições extremas de temperatura e/ou densidade. Acredita-se que esse estado esteja presente nos primeiros momentos do universo e que seja relevante para entender propriedades da cromodinâmica quântica. O QGP é criado e caracterizado em aceleradores de partículas por meio de colisões de íons pesados. No entanto, uma estrutura alongada em psedorapidez (\\textit{double ridge}) na distribuição da correlação angular entre duas partículas foi encontrada em sistemas pequenos, como pp e p--Pb. Essa estrutura assemelha-se àquela observada nas colisões com íons pesados, onde sua interpretação está ligada ao comportamento coletivo que gera uma anisotropia azimutal nos produtos finais das colisões. Essa estrutura não era esperada em sistemas pequenos e sua interpretação física ainda está em debate, em particular no que diz respeito ao papel da hidrodinâmica e das condições iniciais. Uma medida para este efeito com partículas provenientes de quarks pesados ainda não haviam sido realizadas no momento em que este trabalho foi iniciado e esta medida poderia esclarecer questões sobre as diferentes interpretações. Os quarks pesados são uma sonda interessante caso o QGP seja formado devido ao seu tempo de formação inicial, reagindo a toda a evolução do meio. Neste trabalho, os quarks pesados são estudados medindo-se os elétrons provenientes dos decaimentos semi-leptônicos de hádrons que contêm quarks \\textit{charm} ou \\textit{beauty} e outros quarks leves (\\textit{open heavy flavor}). Os hadrons não são reconstruídos e usa-se um método de extração de sinal para remover elétrons de outras fontes. As correlações angulares de elétrons de decaimento de hadrons de quarks pesados com partículas carregadas em colisões de p--Pb a $\\sqrt{s_{m NN}}$ = 5,02 TeV medidos com o experimento ALICE em rapidez central ($ | \\eta | <0,8 $) são apresentadas. As distribuições mostram sinais de anisotropias azimutais que são quantificadas pelo coeficiente $ v_2 $. O $ v_2 $ para elétrons provenientes de quarks pesados é positivo com mais de $ 5 \\sigma $ de significância, fornecendo uma forte indicação de anisotropias azimutais similares ao \\textit{double ridge} para partículas contendo quarks pesados em colisões de alta multiplicidade de p--Pb. Esta é a primeira medida do $ v_2 $ para elétrons vindos de quarks pesados em colisões p--Pb. / A new state of mater, the Quark-Gluon Plasma (QGP), is formed when the ordinary hadronic matter is put under extreme temperature and/or density conditions. This state is believed to be present in the first moments of the universe and it is relevant to understand properties of the quantum chromodynamics. The QGP is created and characterized in particle accelerators by colliding heavy ions. However, a double-ridge long-range structure in the two-particle azimuthal correlation distribution was found in small systems, such as pp and p--Pb. This structure resembles the one observed in heavy-ion collisions, where its interpretation is linked to collective behavior that generates an azimuthal anisotropy in the final products of the collisions. This structure was not expected in small systems and its physical interpretation is still in debate, in particular regarding the role of hydrodynamics and initial conditions. A measurement for this effect with particles coming from heavy quarks was not done by the time this work started and this measurement could shed light into the different interpretations. Heavy quarks are an interesting probe in case the QGP is formed due to their early formation time, experiencing the whole evolution of the medium. In this work, heavy quarks are examined by measuring electrons originating from the semi-leptonic decays of hadrons that contain a heavy quark (charm or beauty) and other light quarks (open heavy flavor). The hadrons are not reconstructed and a signal extraction method is used to remove electrons from other sources. The azimuthal angular correlations of heavy-flavour hadron decay electrons with charged particles in p--Pb collisions at $\\sqrt{s_{m NN}}$ = 5.02 TeV measured with ALICE detector at mid-rapidity ($|\\eta| < 0.8$) are studied. The distributions show signs of azimuthal anisotropies which are quantified by the $v_2$ coefficient. The $v_2$ for heavy-flavor electrons is found to be positive with more than $5\\sigma$ significance, providing very strong indication of long-range azimuthal anisotropies for heavy-flavour particles in high multiplicity p--Pb collisions. This is the first measurement of the $v_2$ for electrons coming from heavy-flavor hadron decays in p--Pb collisions.
|
7 |
A Broad View on the Interpretation of Electromagnetic Data (VLF, RMT, MT, CSTMT) / En bred syn på Tolkning av Elektromagnetiska Data (VLF, RMT, MT, CSTMT)Oskooi, Behrooz January 2004 (has links)
The resolution power of single Very Low Frequency (VLF) data and multi-frequency Radiomagnetotelluric (RMT) data in delineating conductive structures typical for the sedimentary cover and crystalline basement in Scandinavia is studied with a view to future developments of the technique to increasing the frequency range into the LW radio band. Airborne and ground VLF data are interpreted and correlated with RMT measurements made on the ground to better understand the resolution power of VLF data. To aid in this understanding single and multifrequency VLF and RMT responses for some typical resistivity structures are analyzed. An analytic model is presented for obtaining unique transfer functions from measurements of the electromagnetic components on board an air-plane or on the ground. Examples of 2D inversion of ground and airborne VLF profiles in Sweden are shown to demonstrate the quantitative interpretation of VLF data in terms of both lateral and depth changes of the resistivity in the uppermost crust. Geothermal resources are ideal targets for Electromagnetic (EM) methods since they produce strong variations in underground electrical resistivity. Modelling of Magnetotelluric (MT) data in SW Iceland indicates an alteration zone beneath the surface, where there are no obvious geothermal manifestations, in between Hengill and Brennisteinsfjoll geothermal systems. It suggests that a hydrothermal fluid circulation exists at depth. It also proves that the MT method, with its ability to map deep conductive features can play a valuable role in the reconnaissance of deep geothermal systems in active rift regimes such as in Iceland. A damped nonlinear least-squares inversion approach is employed to invert Controlled Source Tensor MT (CSTMT) data for azimuthal anisotropy in a 1D layered earth. Impedance and tipper data are inverted jointly. The effects of near-surface inhomogeneities are parameterized in addition to each layer parameter(s). Application of the inversion algorithm to both synthetic and field data shows that the CSTMT method can be used to detect azimuthal anisotropy under realistic conditions with near surface lateral heterogeneities.
|
8 |
A Broad View on the Interpretation of Electromagnetic Data (VLF, RMT, MT, CSTMT) / En bred syn på Tolkning av Elektromagnetiska Data (VLF, RMT, MT, CSTMT)Oskooi, Behrooz January 2004 (has links)
<p>The resolution power of single Very Low Frequency (VLF) data and multi-frequency Radiomagnetotelluric (RMT) data in delineating conductive structures typical for the sedimentary cover and crystalline basement in Scandinavia is studied with a view to future developments of the technique to increasing the frequency range into the LW radio band. Airborne and ground VLF data are interpreted and correlated with RMT measurements made on the ground to better understand the resolution power of VLF data. To aid in this understanding single and multifrequency VLF and RMT responses for some typical resistivity structures are analyzed. An analytic model is presented for obtaining unique transfer functions from measurements of the electromagnetic components on board an air-plane or on the ground. Examples of 2D inversion of ground and airborne VLF profiles in Sweden are shown to demonstrate the quantitative interpretation of VLF data in terms of both lateral and depth changes of the resistivity in the uppermost crust.</p><p>Geothermal resources are ideal targets for Electromagnetic (EM) methods since they produce strong variations in underground electrical resistivity. Modelling of Magnetotelluric (MT) data in SW Iceland indicates an alteration zone beneath the surface, where there are no obvious geothermal manifestations, in between Hengill and Brennisteinsfjoll geothermal systems. It suggests that a hydrothermal fluid circulation exists at depth. It also proves that the MT method, with its ability to map deep conductive features can play a valuable role in the reconnaissance of deep geothermal systems in active rift regimes such as in Iceland.</p><p>A damped nonlinear least-squares inversion approach is employed to invert Controlled Source Tensor MT (CSTMT) data for azimuthal anisotropy in a 1D layered earth. Impedance and tipper data are inverted jointly. The effects of near-surface inhomogeneities are parameterized in addition to each layer parameter(s). Application of the inversion algorithm to both synthetic and field data shows that the CSTMT method can be used to detect azimuthal anisotropy under realistic conditions with near surface lateral heterogeneities.</p>
|
9 |
ELLIPTIC FLOW STUDY OF CHARMED MESONS IN 200 GEV AU+AU COLLISIONS AT THE RELATIVISTIC HEAVY ION COLLIDERHamad, Ayman I.A 06 July 2017 (has links)
No description available.
|
Page generated in 0.2378 seconds