Spelling suggestions: "subject:"aziridination"" "subject:"aziridinations""
11 |
Asymmetric Syntheses Of Various Novel Chiral Ligands With Norbornene Backbone: The Use Of Chiral Catalyst In Asymmetric ReactionsOlcay, Elmali 01 June 2005 (has links) (PDF)
The synthetic strategy of this study mainly depends upon the asymmetric desymmetrization of meso norbornene type an anhydride. Asymmetric desymmetrization was achieved by using chinchona alkaloids under kinetically controlled conditions. The resultant mono ester carboxylic acid was epimerized to trans configuration. Subsequent esterification followed by lithium aluminum hydride reduction afforded the first chiral diol ligand with 98 % ee. Transformation of diol to corresponding trans diamine was achieved via Mitsunobu-Gabriel combination. The resultant diamine was first transformed into salen type ligand with 3,5-di-tert-butyl-2-hydroxybenzaldehyde. Throughout this process, no racemization was observed and all the ligands tested in asymmetric reactions have 98 % ee value.
The second part of the thesis involves the asymmetric test reactions of the chiral ligands to check the effectiveness of them. The first testing method was diethylzinc addition to benzaldehyde. The ligands showed moderate effectiveness. The salen type ligand was tested in asymmetric epoxidation and aziridination reactions and it showed good effectiveness. Another applied method was desymmetrization of meso 2-cyclohexene-3,4-diol in which 2-(diphenylphosphino)benzoic acid attached trans-diol and trans-diamine type ligands were tested. Since norbornene type strained bicyclic systems are available in ring opening methathesis polymerization (ROMP) reactions, trans-diamine was subjected to ROMP to get an enlarged macromolecular system
|
12 |
Asymmetric Dihydroxylation and Aziridination of Allenes and Related ChemistryLiu, Renmao 11 May 2007 (has links) (PDF)
A novel method for asymmetric synthesis of α-hydroxy ketone with excellent regio- and stereoselectivity has been established by the systematic investigation of asymmetric dihydroxylation of allenes. The efficiency of kinetic resolution of racemic allenes was also investigated by using the AD reaction on both 1,3-disubstituted and trisubstituted allenes. Steric effects, electronic effects and allene substitution are also discussed. Aziridines were formed by copper-catalyzed intramolecular nitrene addition to alkenes. The carbamate group was used as the tether between the alkene and the nitrene. Subsequent nucleophilic attack of the aziridine was accomplished using RSH, R2NH, N3-,or ROH as the nucleophile. This addition was found to be regio- and stereoselective. This methodology has provided a new strategy for the stereoselective construction of three adjacent functional groups, in particular the 1,2 diamino-3-hydroxy unit. The rhodium-catalyzed intramolecular aziridination of allenic N-sulfonyloxy carbamates has been established. Efficient ring opening of these bicyclic compounds may provide synthetic utility in organic chemistry. The intramolecular aziridination of allenic sulfamate esters was tested on a single example to afford in situ a ring opened product.
|
13 |
Synthesis and Biological Activity of <i>N</i>-Acyl AziridinesWells, Greggory M. 04 August 2016 (has links)
No description available.
|
14 |
Concerted or Stepwise? : <i>β-Elimination, Nucleophilic Substitution, Copper Catalysed Aziridination and Ruthenium Catalysed Transfer Hydrogenation Studied by Kinetic Isotope Effects and Linear Free-Energy Relationships</i>Ryberg, Per January 2002 (has links)
<p>This thesis describes the use of kinetic isotope effects, linear free energy relationships and stereochamical studies to distinguish between different mechanistic alternatives and to obtain information about transition state structure.</p><p>In the first part fluorine and deuterium kinetic isotope effects were determined for the base promoted HF elimination from 4-fluoro-4-(4’-nitrophenyl)butane-2-on. During this work a new method for the determination of fluorine kinetic isotope effects was developed. The results from the study demonstrates that the reaction proceeds via an E1cB<sub>ip</sub> mechanism.</p><p>In the second part the transition state structure for the S<sub>N</sub>2 reaction between ethyl chloride and cyanide ion in DMSO was studied. Kinetic isotope effects for six different positions in the reacting system, both in cyanide and ethyl chloride, were determined. The experimental isotope effects were then compared with the theoretically predicted isotope effects. </p><p>The third part describes the use of Hammett type free-energy relationships and stereochemical evidence to study the mechanism of the copper catalysed alkene aziridination. The results from the study support a model that involves the simultaneous presence of two different copper nitrene intermediates. One which reacts non-stereospecifically via a radical intermediate and one which reacts stereospecifically via a concerted mechanism.</p><p>In the fourth part a mechanistic study of the Ru(aminoalcohol) catalysed transfer hydrogenation of acetophenone in isopropanol is described. Kinetic isotope effects were determined for both proton and hydride transfer. The observation of significant primary deuterium kinetic isotope effects for both proton and hydride transfer support a mechanism where the proton and hydride are transferred simultaneously in a concerted mechanism.</p>
|
15 |
Concerted or Stepwise? : β-Elimination, Nucleophilic Substitution, Copper Catalysed Aziridination and Ruthenium Catalysed Transfer Hydrogenation Studied by Kinetic Isotope Effects and Linear Free-Energy RelationshipsRyberg, Per January 2002 (has links)
This thesis describes the use of kinetic isotope effects, linear free energy relationships and stereochamical studies to distinguish between different mechanistic alternatives and to obtain information about transition state structure. In the first part fluorine and deuterium kinetic isotope effects were determined for the base promoted HF elimination from 4-fluoro-4-(4’-nitrophenyl)butane-2-on. During this work a new method for the determination of fluorine kinetic isotope effects was developed. The results from the study demonstrates that the reaction proceeds via an E1cBip mechanism. In the second part the transition state structure for the SN2 reaction between ethyl chloride and cyanide ion in DMSO was studied. Kinetic isotope effects for six different positions in the reacting system, both in cyanide and ethyl chloride, were determined. The experimental isotope effects were then compared with the theoretically predicted isotope effects. The third part describes the use of Hammett type free-energy relationships and stereochemical evidence to study the mechanism of the copper catalysed alkene aziridination. The results from the study support a model that involves the simultaneous presence of two different copper nitrene intermediates. One which reacts non-stereospecifically via a radical intermediate and one which reacts stereospecifically via a concerted mechanism. In the fourth part a mechanistic study of the Ru(aminoalcohol) catalysed transfer hydrogenation of acetophenone in isopropanol is described. Kinetic isotope effects were determined for both proton and hydride transfer. The observation of significant primary deuterium kinetic isotope effects for both proton and hydride transfer support a mechanism where the proton and hydride are transferred simultaneously in a concerted mechanism.
|
16 |
Étude mécanistique computationnelle des réactions d’amination catalysées par des dimères de rhodiumAzek, Emna 01 1900 (has links)
Catalytic amination reactions are a powerful tool in organic synthesis. They aim to introduce nitrogen atom to alkane, alkene or thioether moieties, giving rise to amine products that have various medical and industrial applications. The Lebel group has developed catalytic amination reactions in the presence of rhodium dimers using N-sulfonyloxycarbamates as nitrene precursors. In the presence of a base, N-sulfonyloxycarbamates presumably afforded rhodium nitrenes which underwent C-H insertions, C=C additions or reactions with the sulfur atom of thioethers resulting in acyclic and cyclic carbamates, aziridines and sulfilimines respectively. In addition, good diastereoselectivities were observed in the presence of a chiral N-sulfonyloxycarbamate reagent and a chiral rhodium dimer for all three reactions.
In this dissertation, we are interested in the mechanistic aspects of these amination reactions. Given the absence of experimental proofs of in-situ generated rhodium nitrene species, playing the role of the amination agent, nor of its precomplex, the rhodium nitrenoid, the different amination reactions mechanisms remain uncertain. Our approach is based on the scan of the potential energy surfaces of different mechanistic paths, for each of the amination reactions, well established on the experimental level, by resorting to the Functional Theory of Density (DFT).
The Ernzerhof research group is expert on the development of exchange-correlation functionals, therefore relevant strict criteria have been considered when choosing and validating the theoretical model used during the mechanistic studies. The correlation exchange functional developed by Perdew-Burke-Ernzerhof (PBE) was established as the best to study reactions involving rhodium dimers where the electronic correlation is strong. We studied the formation and reactivity of rhodium nitrene species considering their two lower energy spin states. Singlet rhodium nitrenes appeared to be the most reactive intermediates for the C-H amination reaction. In addition, singlet rhodium nitrenes were shown responsible for the formation of secondary products such as carbonyls and primary carbamates derived from the corresponding N-mesyloxycarbamates. In sharp contrast, in the aziridination reaction, both singlet and triplet rhodium nitrene species acted as aminating agents in a process involving an intersystem spin crossover. To further rationalize the asymmetric induction of catalytic aziridination reactions, we have undertaken the calculation of the diastereoselectivity ratios in the presence of the chiral catalyst Rh2[(S)-nttl]4. An exhaustive study was performed and it revealed that the asymmetric induction was due to a reactive conformation of rhodium nitrene species in which the ligand adopts C4 symmetry.
Up to now, no mechanistic study involving DFT calculations have been reported in the literature for the amination of thioethers, no matter what catalytic system is used. To study catalytic sulfimidation reactions, we calculated the different mechanistic paths of rhodium catalyzed thioanisole imidation with and without DMAP and bis(DMAP)CH2Cl2 additives. The study showed a 'classical' insertion mechanism of rhodium nitrene species into the thioether in absence of bis(DMAP)CH2Cl2. In the presence of the latter, the mechanism diverged to a thioether insertion/salt (bis(DMAP)CH2Cl-OMs) elimination reaction where the rhodium nitrenoid complex was, henceforth, the imidation reagent. / Les réactions d’amination catalytiques sont un outil très efficace en synthèse organique.
Elles consistent à introduire un azote sur différents composés organiques, permettant de
synthétiser des produits aminés qui peuvent être utilisés pour différentes applications
médicales et industrielles. Le groupe de recherche du Pr Lebel a développé des réactions
d’amination faisant appel aux dimères de rhodium comme catalyseurs et en utilisant les Nsulfonyloxycarbamates,
comme précurseurs de nitrènes métalliques. En effet, en présence
d’une base, les N-sulfonyloxycarbamates forment possiblement un intermédiaire de type
nitrène de rhodium qui peuvent s’insérer dans un lien C-H, s’additionner sur un lien C=C ou
réagir avec un atome de soufre d’un thioéther. On peut ainsi préparer des carbamates cycliques
et acycliques, des aziridines et des sulfilimines respectivement. Dans le cas où les réactions
d’amination sont catalysées par des dimères de rhodium chiraux, on obtient de bonnes
diastéréosélectivités en présence d’un réactif N-sulfonyloxycarbamate chiral.
Dans cette dissertation, nous nous sommes intéressés aux aspects mécanistiques de ces
réactions d’amination. À défaut de preuves expérimentales solides pour prouver la génération
in-situ des espèces nitrènes de rhodium, lesquelles sont les agents d’amination clés, ni de celle
du pré-complexe, nitrénoïde de rhodium, des incertitudes subsistaient toujours concernant les
mécanismes des différentes réactions d’amination. Notre approche se base sur l’étude des
surfaces d’énergies potentielles de différents chemins mécanistiques possibles pour chacune
des réactions d’amination, bien établie sur le plan expérimental, en faisant recours à la Théorie
des Fonctionnelles de la Densité (DFT).
Le groupe de recherche du Pr Ernzerhof est expert dans le développement des
fonctionnelles d’échange-corrélation. Pour ce, des critères strictes et pertinents ont été pris en
compte lors du choix et de la validation du modèle théorique utilisé dans ces études
mécanistiques. La fonctionnelle d’échange corrélation développée par Perdew–Burke–
Ernzerhof (PBE) s’est révélé être la meilleure pour décrire ces systèmes réactionnels faisant
intervenir les dimères de rhodium dont la corrélation électronique est forte. À l’aide de cette
fonctionnelle pure, nous avons étudié la formation et la réactivité des espèces nitrènes de
rhodium en fonction de leurs deux états de spin de plus basse énergie. Les nitrènes de rhodium
singulet se sont révélés être les intermédiaires les plus réactifs dans l`amination de liens C-H.
De plus, les nitrènes de rhodium à l’état singulet sont responsables de la formation des
produits secondaires tels que les carbonyles et les carbamates primaires dérivés des Nmésyloxycarbamates
correspondants. Dans la réaction d’aziridination, les espèces nitrènes de
rhodium à l’état singulet et triplet peuvent toutes les deux agir comme agents d'amination et
les processus font intervenir un croisement intersystème de spin. Afin de rationaliser
l’induction asymétrique des réactions d’aziridination catalytiques, nous avons entrepris le
calcul des ratios de diastéréosélectivités en présence du catalyseur chiral Rh2[(S)-nttl]4.
L’étude exhaustive de cette réaction a permis de déterminer que l’induction asymétrique
provient d’une conformation réactive de l’espèce nitrène de rhodium de symétrie C4.
Aucune étude mécanistique s’appuyant sur la chimie computationnelle n’a été rapportée
dans la littérature pour la réaction d’amination de thioéthers et ce peu importe le système
catalytique. Afin d’étudier les réactions de sulfimidation catalytiques, nous avons calculé les
différents chemins mécanistiques de l’imidation du thioanisole catalysée par un complexe de
rhodium avec et sans les additifs DMAP et bis(DMAP)CH2Cl2. L’étude montre que le
mécanisme procède via une insertion ‘classique’ des espèces nitrènes de rhodium dans le
thioéther en absence de bis(DMAP)CH2Cl2. En présence de ce dernier, le mécanisme diverge
vers une réaction d’insertion du thioéther/élimination d’un sel (bis(DMAP)CH2Cl-OMs) où le
complexe nitrénoïde de rhodium devient, désormais, l’agent d’imidation.
|
Page generated in 0.0934 seconds