• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sur l'(A,B)-invariance de polyèdres convexes ; application à la commande sous contraintes et au problème l1

TRABUCO DOREA, Carlos Eduardo 13 October 1997 (has links) (PDF)
Ce travail porte sur l'étude de la propriété d'(A,B)-invariance de polyèdres convexes et son application à la commande sous contraintes et au problème l 1. D'abord, nous proposons une caractérisation explicite de l'(A,B)-invariance de polyèdres convexes pour des systèmes en temps discret. Cette caractérisation se traduit par des conditions nécessaires et suffisantes sous la forme de relations matricielles linéaires, et présente deux avantages majeurs vis-à-vis de celles rencontrées dans la littérature : elle s'applique à tous les polyèdres convexes et elle ne nécessite pas le calcul de sommets. Ces avantages se font sentir notamment dans le calcul du domaine (A,B)-invariant suprémal inclus dans un polyèdre donné, pour lequel nous proposons une méthode numérique. Le problème de calculer une loi de commande rendant positivement invariant en boucle fermée un polyèdre (A,B)-invariant est également traité. Les relations d'(A,B)-invariance sont alors généralisées à des systèmes soumis à des contraintes linéaires sur la commande et à des systèmes soumis à des perturbations additives bornées. Puis, les résultats obtenus en temps discret sont étendus aux systèmes en temps continu. Ensuite, le problème d'atténuation de perturbations additives persistantes, connu dans la littérature comme problème l 1, est étudié. Les domaines (A,B)-invariants intérieurement stabilisables sont d'abord caractérisés. Puis, nous proposons une approche décomposée pour le calcul du domaine intérieurement stabilisable suprémal inclus dans le polyèdre défini par les contraintes de performance l 1. Un niveau de performance donné est atteignable si et seulement si ce domaine suprémal n'est pas vide. Cette approche géométrique permet notamment de déterminer directement la solution du problème l 1 pour une classe importante de systèmes. Enfin, nous étendons l'étude de l'(A,B)-invariance de polyèdres à des systèmes dont le modèle est soumis à des incertitudes d u type structuré.

Page generated in 0.0552 seconds