• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Strengthening of multi-span reinforced concrete structures using FRCM composites : experimental and analytical investigations

Mandor, Ahmed 06 July 2022 (has links)
La détérioration des structures en béton armé est inévitable pour de nombreuses raisons telles que les exigences de charge, les changements d'utilisation, les changements dans les codes de conception, et le plus important, l'exposition continue à un environnement difficile pendant le cycle de vie. Par conséquent, ils deviennent vulnérables à la fissuration, à la carbonatation du béton, à l'écaillage de la couverture et à d'autres formes de détérioration qui rendent indispensable la demande de processus de modernisation et de renforcement. Récemment, les systèmes matrices cimentaires renforcées de fibres (MCRF) ont rejoint la famille des matériaux de renforcement/réparation en tant qu'alternative prometteuse pour surmonter les inconvénients associés aux systèmes de polymère renforcé de fibres (PRF). Les MCRF ont montré des performances significatives dans le renforcement des structures déficientes/détériorées en termes de déformation et de capacité de charge. Cependant, l'utilisation de tels systèmes a été limitée aux structures simplement soutenues. À ce jour, la faisabilité de l'utilisation de systèmes MCRF pour renforcer les structures à plusieurs portées n'a jamais été signalée, bien que de telles structures se manifestent dans de nombreuses applications d'ingénierie telles que les bâtiments résidentiels, les garages de stationnement, les ponts supérieurs et les ponts à longue portée. Par conséquent, le comportement de telles structures lorsqu'elles sont renforcées avec des MCRF est inconnu en termes de modes de rupture, de ductilité et, surtout, de formation de rotules plastiques à leurs sections critiques. Dans cette étude, le comportement en flexion de poutres à multi-portées en béton armé déficientes et renforcées avec des systèmes MCRF a été étudié. Le travail comprend des enquêtes expérimentales et analytiques. Le travail expérimental consistait en seize poutres à deux portées à grande échelle de 150 x 250 x 3600 mm. Les poutres ont été construites et testées dans des configurations de charge à cinq points. Pour stimuler le défaut de flexion qui pourrait survenir lors de la conception ou pendant la construction, le rapport des armatures de traction interne dans la section déficiente était presque de 50 % de celui de l'autre section et doit donc être renforcé. Les paramètres d'essai comprenaient l'emplacement (sections négatives ou positives) et le type de systèmes de renforcement utilisés (PBO-MCRF, C-MCRF et PRF), le nombre de composites MCRF (1, 2 et 4 couches), et le schéma de renforcement (configurations symétriques et asymétriques). Les résultats des tests ont reflété le rôle important de l'utilisation de MCRF systèmes dans l'amélioration de la réponse en flexion des structures continues déficientes, en particulier la ductilité, les rapports de redistribution des moments et les capacités de charge. Les systèmes MCRF, en particulier PBO-MCRF, ont montré une réponse de glissement progressive entre les fibres et leur matrice environnante, contrairement à la manière rigide et soudaine courante des systèmes PRF. Ceci était cohérent avec la ductilité des poutres renforcées, qui présentaient des indices comparables à ceux des poutres de contrôles. Par conséquent, les sections renforcées avaient une capacité de rotation suffisante pour redistribuer les moments dans un intervalle représentant 42 et 80 % de celle de leurs homologues non renforcées dans la poutre de contrôle. Les systèmes MCRF ont également amélioré la capacité de flexion des poutres renforcées avec une augmentation comprise entre 5 et 36 % de celle des poutres de contrôle par rapport à une augmentation comprise entre 31 et 63 % pour la capacité de moment, en fonction du type, de la quantité, de l'emplacement et de la configuration du MCRF utilisé. De plus, l'utilisation de couches MCRF dans les régions d'affaissement a considérablement amélioré la rigidité en flexion des poutres renforcées dans la phase de service (avant la plastification de l'acier) par rapport à leurs homologues dans les sections de monopolisation. Cela était dû à l'effet de restriction des composites MCRF sur le comportement à la fissuration émergé dans de telles régions d'affaissement Analytiquement, les directives de conception de l'ACI 549.4R-20 (ACI 2020) ont été étudiées à l'aide des données expérimentales obtenues à partir des tests. Il a été conclu que les formulations de l'ACI 549.4R (2020) sous-estimaient les résistances ultimes des poutres renforcées par MCRF. Par conséquent, l'auteur a développé un modèle de déformation qui peut identifier avec précision les déformations de décollement dans les systèmes MCRF à utiliser dans les équations de conception estimant la contribution de ces systèmes à la capacité de flexion des éléments renforcés. Cette étude a introduit un modèle analytique qui peut prédire avec précision le comportement en flexion des structures à plusieurs travées en mettant l'accent sur leur capacité de rotation et leur ductilité. Contrairement aux modèles disponibles dans la littérature, le modèle proposé tient compte de la variation de la rigidité de la structure lors du chargement y compris celle du système de renforcement utilisé. Le modèle peut déterminer avec précision la capacité de rotation des rotules en plastique formées, estimer le rapport de redistribution des moments entre les sections critiques à n'importe quelle charge appliquée et anticiper le mécanisme de défaillance de la structure renforcée. L'efficacité du modèle a été validée par rapport aux résultats d'essais des poutres renforcées avec MCRF considérées dans le programme expérimental et un bon accord entre les résultats expérimentaux et analytique a été obtenu. Afin de déterminer avec précision les flèche à mi-portée des structures renforcées à multi-portées, un nouveau paramètre de réduction a été incorporé dans les formulations ACI 318 (2019) pour tenir compte de la rigidité du système de renforcement, car ces formulations ont été principalement développées pour les structures non renforcées. Les nouvelles formulations ont considérablement amélioré la prédiction de la capacité de déflexion des structures renforcées avec un rapport expérimental/analytique moyen de 1.02 contre 1.7 lorsque les formulations ACI ont été utilisées. Le résultat de ce travail a été publié (ou soumis pour publication) dans cinq articles de revues et un article dans une conférence, comme détaillé tout au long de la thèse. / Deterioration of reinforced concrete (RC) structures is unavoidable due to many reasons such as loading requirements, changes in use, change in the design codes, and the most important the continuous exposure to harsh environment during the life cycle. Consequently, they become vulnerable to cracking, concrete carbonation, cover spalling, and other forms of deterioration that make the demand for retrofitting and strengthening processes are essential. At present, fabric reinforced cementitious matrix (FRCM) systems have recently joined the family of strengthening/repairing techniques as a promising alternative to overcome the drawbacks associated with fiber reinforced polymer (FRP) systems. FRCM showed significant performance in strengthening the deteriorated structures in terms of the deformation and the load-carrying capacities. However, the use of such systems has been limited to the simply supported structures. To date, the feasibility of the use of FRCM systems to strengthen multi-span RC structures has never been reported, though such structures are manifested in many engineering applications such as RC residential buildings, parking garages, and long span bridges. Therefore, the behavior of RC continuous structures when strengthened with FRCM systems is unknown in terms of failure modes, ductility, moment redistribution between critical sections and most importantly, the formation of plastic hinges at those sections. In this study, the flexural behavior of RC deficient continuous beams strengthened with FRCM systems were investigated. The work included experimental and analytical investigations. The experimental work consisted of sixteen large-scale continuous beams of 150 x 250 x 3600 mm. The beams were constructed and tested under five-point load configurations. To stimulate the flexural deficiency that might occur in design or during construction, the ratio of the internal tensile steel in the deficient section was almost 50% of that of the other section and therefore need to be strengthened. The test parameters included the location (hogging or sagging sections) and the type of strengthening systems used (PBO-FRCM, C-FRCM, and FRP), the number of FRCM systems (1, 2, and 4 layers), and the strengthening scheme (symmetric and asymmetric configurations). The test results proved the efficiency of FRCM systems in enhancing the flexural response of RC deficient continuous structures, particularly the ductility, the moment redistribution ratios, and load-carrying capacities. FRCM systems, especially PBO-FRCM showed gradual slippage response between the fibers and their surrounding matrix contrary to the common stiff and sudden manner of FRP systems. This was consistent with the ductility of the strengthened beams, which showed comparable indices to that of the control beams. Consequently, the strengthened sections had enough rotation capacity to redistribute the moments in a range representing 42 and 80% from that of their unstrengthened counterparts in the control beam. FRCM also increased the load-carrying capacity of the strengthened beams in a range between 5 and 36% of that in the control beams compared to an increase ranged between 31 and 63% for the moment capacity, based on the type, amount, location, and configuration of the FRCM used. Moreover, strengthening the sagging regions notably enhanced the flexural stiffness of the strengthened beams in the service stage (before steel yielding) compared to their counterparts in the hogging regions. This was due to the restriction effect of FRCM composites on the cracks formation and their pattern emerged in such sagging regions. Analytically, the design guidelines of ACI 549.4R-20 (ACI 2020) were investigated using the experimental data obtained from the tests. It was concluded that the formulations of ACI 549.4R (2020) underestimated the ultimate strengths of FRCM-strengthened beams. Therefore, the author developed a strain model that can accurately identify the debonding strains in FRCM systems to be used in the design equations estimating the contribution of such systems to the flexural capacity of strengthened elements. This study proposed an analytical model that can accurately predict the flexural behavior of multi-span RC structures with a focus on their rotational capacity and ductility. Unlike the available models in the literature, the proposed model accounts for the variation in the structure's stiffness during loading including that of the strengthening system used. The model can precisely determine the rotational capacity of the formed plastic hinges, estimate the moment redistribution ratio between the critical sections at any applied load, and anticipate the failure mechanism of the strengthened structure. The efficiency of the model was validated against the test results of FRCM-strengthened beams considered in the experimental program and a good agreement between the experimental and the theoretical results was obtained. To accurately determine the midspan deflections of continuous EB-strengthened structures, a new reduction parameter was incorporated in the ACI 318 (2019) formulations to account for the stiffness of the strengthening system, as those formulations were mainly developed for unstrengthened RC structures. The new formulations substantially enhanced the prediction of the deflection capacity of the strengthened structures with an average experimental-to-analytical ratio of 1.02 versus 1.7 when ACI formulations were used. The outcome of this work has been published (or submitted for publication) in five journal articles as well as one conference paper as detailed throughout the thesis.
2

Étude du comportement des éléments en béton armé post-renforcés à l'effort tranchant

Fiset, Mathieu 29 January 2020 (has links)
Le comportement à l’effort tranchant des structures en béton armé est un sujet étudié depuis plus d’un siècle. Bien qu’aujourd’hui la compréhension du comportement de ces structures s’est considérablement améliorée, aucune théorie universellement acceptée ne permet de considérer l’ensemble des phénomènes régissant leur comportement à l’effort tranchant. L’étude réalisée dans cette thèse montre que ces théories sont insuffisantes pour prédire le comportement des structures post-renforcées à l’effort tranchant. Une meilleure compréhension des différents mécanismes de résistance à l’effort tranchant agissant dans ce type de structure est donc requise. Les méthodes de post-renforcement étudiées consistent à forer des ouvertures à l’intérieur d’une dalle épaisse afin d’y ancrer des barres de renforcement. Selon le type d’ancrage utilisé, les méthodes de post-renforcement peuvent se départager en deux catégories. Un renforcement est dit adhérent lorsque l’ancrage est assuré par un adhésif permettant de transférer l’effort le long des barres au béton. Un renforcement est dit non adhérent lorsque le transfert d’effort s’effectue uniquement à l’extrémité des barres, à l’endroit où un ancrage mécanique assure une butée entre les barres et le béton. L’étude des méthodes de post-renforcement a montré que celles-ci peuvent augmenter significativement la résistance des éléments postrenforcés. Or, le comportement des barres de post-renforcement affecte le comportement à l’effort tranchant et les mécanismes de résistance. Les théories actuelles permettant de prédire la résistance à l’effort tranchant s’appliquant aux structures renforcées d’étriers conventionnels ne peuvent être utilisées directement. L’objectif de cette thèse est donc de développer un modèle permettant d’évaluer le comportement et la résistance à l’effort tranchant des structures en béton armé post-renforcées. L’étude des membrures en béton post-renforcées de barres adhérentes fait l’objet de la première partie de cette thèse. En s’appuyant sur les essais expérimentaux réalisés antérieurement à l’Université Laval, des lois de comportement et des modèles numériques permettant d’analyser l’adhérence des barres collées ont été développés. En incluant ces lois comportementales dans des analyses non linéaires par éléments finis, la réponse et les mécanismes de résistance à l’effort tranchant ont été étudiés. Le développement d’outils mathématiques permettant d’évaluer le comportement de barres collées a permis de proposer une méthode de calcul de la résistance à l’effort tranchant. Cette méthode considère l’effet du comportement en adhérence sur la résistance à l’effort tranchant offerte par l’armature de cisaillement, Vs, et par le béton, Vc. Une quantité minimale d’armature de cisaillement ainsi que des critères d’espacement adaptés à ce type de renforcement adhérent ont également été proposés. Cette méthode a permis de mieux prédire la résistance des éléments post-renforcés de barres adhérentes. En deuxième partie de cette thèse, les mécanismes de résistance à l’effort tranchant des éléments en béton armé post-renforcés de barres non adhérentes ont été étudiés. Pour ce faire, le comportement expérimental des éléments testés a été examiné puis comparé aux résultats des analyses non linéaires par éléments finis. Bien que la norme S6-14 ne permet pas de prédire la résistance des éléments post-renforcés, le comportement et la résistance de ces structures ont pu être prédits adéquatement par des analyses par éléments finis. L’analyse des essais expérimentaux et des modèles éléments finis ont montré que l’effort tranchant repris par les barres transversales est directement proportionnel à l’ouverture des fissures, à la rigidité des ancrages et à la précontrainte verticale du post-renforcement. Un modèle est proposé afin d’évaluer l’effort reprit par ces barres en fonction de ces paramètres. Les analyses numériques par éléments finis montrent également que l’effort tranchant est essentiellement repris par les barres transversales non adhérentes, la bielle de compression directe agissant dans la zone de béton non fissurée et, dans une moindre proportion, par l’enchevêtrement des granulats . / Le comportement à l’effort tranchant des structures en béton armé est un sujet étudié depuis plus d’un siècle. Bien qu’aujourd’hui la compréhension du comportement de ces structures s’est considérablement améliorée, aucune théorie universellement acceptée ne permet de considérer l’ensemble des phénomènes régissant leur comportement à l’effort tranchant. L’étude réalisée dans cette thèse montre que ces théories sont insuffisantes pour prédire le comportement des structures post-renforcées à l’effort tranchant. Une meilleure compréhension des différents mécanismes de résistance à l’effort tranchant agissant dans ce type de structure est donc requise. Les méthodes de post-renforcement étudiées consistent à forer des ouvertures à l’intérieur d’une dalle épaisse afin d’y ancrer des barres de renforcement. Selon le type d’ancrage utilisé, les méthodes de post-renforcement peuvent se départager en deux catégories. Un renforcement est dit adhérent lorsque l’ancrage est assuré par un adhésif permettant de transférer l’effort le long des barres au béton. Un renforcement est dit non adhérent lorsque le transfert d’effort s’effectue uniquement à l’extrémité des barres, à l’endroit où un ancrage mécanique assure une butée entre les barres et le béton. L’étude des méthodes de post-renforcement a montré que celles-ci peuvent augmenter significativement la résistance des éléments postrenforcés. Or, le comportement des barres de post-renforcement affecte le comportement à l’effort tranchant et les mécanismes de résistance. Les théories actuelles permettant de prédire la résistance à l’effort tranchant s’appliquant aux structures renforcées d’étriers conventionnels ne peuvent être utilisées directement. L’objectif de cette thèse est donc de développer un modèle permettant d’évaluer le comportement et la résistance à l’effort tranchant des structures en béton armé post-renforcées. L’étude des membrures en béton post-renforcées de barres adhérentes fait l’objet de la première partie de cette thèse. En s’appuyant sur les essais expérimentaux réalisés antérieurement à l’Université Laval, des lois de comportement et des modèles numériques permettant d’analyser l’adhérence des barres collées ont été développés. En incluant ces lois comportementales dans des analyses non linéaires par éléments finis, la réponse et les mécanismes de résistance à l’effort tranchant ont été étudiés. Le développement d’outils mathématiques permettant d’évaluer le comportement de barres collées a permis de proposer une méthode iii de calcul de la résistance à l’effort tranchant. Cette méthode considère l’effet du comportement en adhérence sur la résistance à l’effort tranchant offerte par l’armature de cisaillement, Vs, et par le béton, Vc. Une quantité minimale d’armature de cisaillement ainsi que des critères d’espacement adaptés à ce type de renforcement adhérent ont également été proposés. Cette méthode a permis de mieux prédire la résistance des éléments post-renforcés de barres adhérentes. En deuxième partie de cette thèse, les mécanismes de résistance à l’effort tranchant des éléments en béton armé post-renforcés de barres non adhérentes ont été étudiés. Pour ce faire, le comportement expérimental des éléments testés a été examiné puis comparé aux résultats des analyses non linéaires par éléments finis. Bien que la norme S6-14 ne permet pas de prédire la résistance des éléments post-renforcés, le comportement et la résistance de ces structures ont pu être prédits adéquatement par des analyses par éléments finis. L’analyse des essais expérimentaux et des modèles éléments finis ont montré que l’effort tranchant repris par les barres transversales est directement proportionnel à l’ouverture des fissures, à la rigidité des ancrages et à la précontrainte verticale du post-renforcement. Un modèle est proposé afin d’évaluer l’effort reprit par ces barres en fonction de ces paramètres. Les analyses numériques par éléments finis montrent également que l’effort tranchant est essentiellement repris par les barres transversales non adhérentes, la bielle de compression directe agissant dans la zone de béton non fissurée et, dans une moindre proportion, par l’enchevêtrement des granulats. / Shear behavior of reinforced concrete structures has been studied for more than one century. Even if shear behavior is now better understood, a unique shear theory has not been commonly accepted yet. The study presented in this thesis shows that current theories cannot adequately predict the shear behavior of strengthened structures with post-installed reinforcement and a better understanding of shear is required for this type of members. The shear strengthening methods studied consist of adding drilled-in vertical reinforcing bars into a reinforced concrete structure. These bars can be bonded to the concrete with a high-strength epoxy adhesive, or anchored at their extremities to the structure with mechanical anchorages, such as steel plates and expansion anchorages. Experimental loading tests carried out at Université Laval on shear strengthened members confirmed the efficiency of these methods to increase the shear capacity. However, the post-installed reinforcing bars behavior affects the shear behavior of strengthened members and current theories considering typical stirrups are not applicable. The objective of this thesis is to develop a model that can be used to predict the shear capacity of reinforced concrete members strengthened with post-installed shear reinforcement. The first part of this thesis consists in analyzing the shear behavior of reinforced concrete members strengthened with epoxy-bonded bars. Based on experimental tests, a bond model and a numerical model were developed to analyze the behavior of bonded bars. Then, this bond behavior was introduced in a finite element model to analyze the response and the shear resistance mechanisms in strengthened members. It appears that the bond behavior affects the capacity of the epoxy-bonded bar at a crack as well as the crack width, reducing the shear reinforcement and aggregate interlock capacities. Based on these results, equations were proposed to determine the shear capacity provided by epoxy-bonded bars and by the aggregate interlock. A minimum amount and spacing criteria were also proposed for epoxy-bonded shear reinforcing bars. The method proposed in this thesis for strengthened members with epoxy-bonded bars adequately predicts the shear capacity of members tested in the literature. The second part of this thesis studies the shear resistance mechanisms in shear strengthened members with unbonded reinforcing bars. The behavior of tested members and finite element models were analyzed and compared. While the CHBDC is not appropriate to predict the shear capacity of members with unbonded bars, FE analyses showed a good match with experimental tests. These results showed that a large portion of shear is transferred by unbonded shear reinforcement. The main parameters affecting this mechanism are the critical shear crack width, the unbonded bars stiffness (including the stiffness of anchorages) and the bars prestressing. For the analyzed members, FE results also showed that a large part of shear is carried by a direct strut action in uncracked concrete, while the portion of shear carried by aggregate interlock is relatively smaller
3

Développement d'une poutre de béton armé de bambou préfabriquée pour l'habitat urbain de Hanoi

Boucher, Jonathan 12 April 2018 (has links)
Ce mémoire porte sur le développement d’un système de plancher de béton préfabriqué destiné à l’habitat urbain de Hanoi et plus particulièrement sur la préfabrication d’une poutre de béton armé de bambou. Une partie de la recherche fut menée conjointement avec M. Dany Blackburn qui s’intéressa à l’habitation à faible coût et aux bétons cellulaires. Dans la première partie de ce mémoire, notre travail consistait à dresser le portrait du marché de la construction locale afin d’en saisir les réalités et les enjeux principaux. Les observations réalisées sur le terrain à l’été 2002 sont donc présentées dans la première partie de ce mémoire ainsi que dans celui de Dany Blackburn (2006). En second lieu, une recension d’écrits fait le point sur l’état actuel des publications les plus récentes sur la technologie du béton armé de bambou. Les thèmes retenus sont très étroitement liés à cette recherche exploratoire. Il s’agit des propriétés physiques et mécaniques du bambou, des méthodes de préservation de la matière, des critères de choix de l’espèce de bambou, du problème d’adhérence entre le bambou et le béton et l’utilisation des armatures de bambou dans le béton dans le cas d’une poutre. Notons enfin que cette recension ne prétend aucunement être exhaustive. L’accent est mis davantage sur les études récentes et sur les résultats les plus marquants. C’est à partir de l’information recueillie sur le terrain et de celle recensée dans la littérature que fut réalisé l’objectif premier de ce mémoire, soit la préfabrication d’une poutre de béton armé de bambou destiné à l’habitat urbain de Hanoi. La troisième partie de la recherche expose donc la méthodologie empruntée lors des expérimentations. Finalement, un prototype de plancher préfabriqué en grandeur réelle fut soumis à un essai de chargement. La maquette se compose de 3 poutres de béton armé de bambou ainsi que de 10 dalles de béton cellulaire produites par Dany Blackburn dans le cadre de son mémoire. Des essais mécaniques ont ensuite été menés afin de mesurer l’efficacité structurale des poutres de béton armé de bambou et du système de plancher préfabriqué. Les résultats présentés dans la dernière partie de ce mémoire démontrent que l’utilisation du bambou comme armature de béton dans la préfabrication de poutres est une alternative intéressante et peut être utilisée efficacement pour la construction résidentielle de Hanoi. / This thesis relates on the development of a precasted concrete floor intended for the urban habitat of Hanoi and more particularly to the prefabrication of a concrete beam reinforced with bamboo. A part of this research was carried out jointly with Mr. Dany Blackburn which was interested to low cost housing and gas concrete slabs. Initially, our work consisted in drawing up the portrait of the local construction market to seize the principal realities and stakes of them. The observations carried out on the ground at summer 2002 are thus presented in the first part of this thesis. In the second part, a recension of writings gives a progress report on the current state of the most recent publications on the bamboo reinforced concrete technology. With the information collected on the ground and listed in the literature, the principal objective of this thesis was carried out: the prefabrication of a concrete beam reinforced with bamboo. The third part of research exposes the methodology used during the experiments. Finally, a real size prototype of the prefabricated floor system was assembled. The model is composed of 3 concrete beams reinforced with bamboo and 10 gas concrete slabs produced by Dany Blackburn within its report. Mechanical tests were then carried out to measure the structural effectiveness of the concrete beams reinforced with bamboo and of the prefabricated floor system. The results presented in the last part of this thesis show that the bamboo as concrete reinforcement in the prefabrication of beams are an interesting alternative and can be used effectively for the residential construction of Hanoi.
4

Renforcement des dalles épaisses en cisaillement

Cusson, Benoit 18 April 2018 (has links)
La dégradation des infrastructures routières en béton armé est un sujet préoccupant pour des organismes de gestion des ouvrages d’art comme le Ministère des Transports du Québec (MTQ). En effet, la croissance des charges et du volume de trafic routier combinée à l’exposition d’agents agressifs a mené à un vieillissement accéléré de certaines structures. En parallèle, les connaissances nouvelles dans le domaine des mécanismes de résistance, notamment l’effet d’échelle en cisaillement, questionnent la capacité de plusieurs structures à reprendre les charges dont les ponts à dalle épaisse sans armature de cisaillement. L’effondrement du viaduc de la Concorde en 2006, constitué en partie de dalles épaisses sans armature de cisaillement, a mis en évidence la nécessité de mettre en place et développer des techniques de renforcement en cisaillement adaptées à ce type de structure. Une méthode a été étudiée à l’Université Laval qui consistait à introduire des barres d’armature verticales enduites d’époxy dans des trous percés depuis la face supérieure de la structure. Le projet actuel pousse plus loin l’expérience en étudiant un espacement longitudinal différent et en incluant diverses méthodes d’ancrage pour les barres verticales. Pour réaliser cette étude, cinq tranches de dalle de géométrie identique ont été construites. Chacune de celles-ci ont ensuite été renforcées selon les diverses techniques. L’ensemble des corps d’épreuve a été soumis à des essais de flexion en trois points pour déterminer le comportement sous sollicitation en cisaillement. Parallèlement, des tests d’arrachement ont été effectués pour caractériser l’ancrage chimique époxydique utilisé. Les résultats montrent que, parmi les méthodes de renforcement étudiées, les deux méthodes nécessitant un perçage depuis la face inférieure des corps d’épreuve sont trop complexes à mettre en place en comparaison au gain de résistance obtenu. Également, on conclut que les ancrages mécaniques sont moins performants que les ancrages chimiques. Plus encore, avec un espacement longitudinal adéquat, l’utilisation de barres enduites d’époxy insérées depuis la face supérieure d’une dalle engendre un comportement structural similaire à celui d’une dalle avec des étriers standards conformes à la norme en vigueur (CAN/CSA-S6-06, 2006). La dispersion des fissures et la réserve de capacité suite à la rupture montrent que cette méthode a beaucoup de potentiel. / The degradation of concrete infrastructure is a major concern for organizations such as the Ministère des Transports du Québec (MTQ) which is managing a large network of bridges and transport infrastructure. In recent decades, growth in loads and volume of traffic combined with exposure to aggressive agents caused a rapid deterioration of some of these structures. In parallel, the knowledge in the field of resistance mechanisms, including the scale effect in shear, question the capacity of several structures, such as thick slab bridges without shear reinforcement, to handle traffic loadings. The collapse of the Concorde overpass in 2006, initiated at a thick slab portion without shear reinforcement, highlighted the need to develop a strengthening technique for shear for this type of structure when appropriate. A method was tested at Laval University where vertical reinforcing bars coated with epoxy where inserted in holes drilled from the top face of the structure. The current project furthers the experience by studying a different longitudinal spacing including various methods for anchoring the vertical bars. For this study, five slices of slab with identical geometry were built. Each of these slabs was then reinforced by the various techniques studied. The set of test bodies were loaded in a three-point bending set up to determine the behavior under shear. Meanwhile, pull-out tests were performed to characterize the chemical epoxy anchor used. The results show that both methods requiring drilling from the underside of the slabs tested are too cumbersome to be implemented relative to the resistance gain obtained. Also, the study showed that mechanical anchors are less efficient than chemical anchors. More so, it was found that with an adequate longitudinal spacing, epoxy coated bars inserted from the slab top surface provided a slab behavior similar to the one with stirrups in accordance with the relevant standard (CAN/CSA-S6-06, 2006). The dispersion of cracks and observed reserve capacity following the failure shows that this method has great potential.

Page generated in 0.0582 seconds