• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comportement en flexion composée de poteaux circulaires en béton armé confinés par des polymères renforcés de fibre de carbone (PRFC)

Boucher-Trudeau, Mathieu January 2010 (has links)
La réhabilitation parasismique de piliers de ponts et de poteaux de bâtiments en béton armé peut être réalisée efficacement par le confinement à l'aide de polymères renforcés de fibres de carbone (PRFC), ce qui a été étudié dans le présent projet par des essais en compression-flexion sur huit poteaux, dont quatre ont été réhabilités avec des PRFC. Les ponts, viaducs et bâtiments canadiens construits selon les codes de conception datant d'avant les années 1970 sont propices à subir d'importants dommages lors d'un séisme et même à poser un risque pour la sécurité des utilisateurs/occupants. Depuis, les normes parasismiques ont été grandement améliorées. De plus, avec le vieillissement des infrastructures, des dilemmes importants forcent les décideurs à choisir entre la réhabilitation et la reconstruction. Il importe de quantifier l'amélioration de la performance sismique apportée par le confinement des poteaux avant d'adopter cette technique à grande échelle. Pour cela, il faut étudier la ductilité et la résistance des poteaux confinés et non confinés et évaluer l'amélioration de la capacité de dissipation de l'énergie sismique. Les résultats ont de plus été comparés aux prédictions du modèle de confinement de Eid et Paultre afin d'évaluer la précision de ce modèle. Pour répondre à ces objectifs, huit spécimens ont été construits, quatre ont été réhabilités et tous les poteaux ont été testés par chargements axial constant et latéral cyclique. L'espacement des étriers, le niveau de charge axiale ainsi que l'usage de confinement ont été étudiés. Des courbes d'hystérésis ont ensuite été tracées afin de calculer les gains en capacité de dissipation d'énergie sismique. L'hypothèse de départ était que les poteaux confinés reprendraient une charge latérale maximale légèrement plus élevée, mais surtout qu'ils se déformeraient davantage et qu'ils dissiperaient plus d'énergie avant la rupture. Cette recherche vient combler un manque criant de données expérimentales sur le comportement en flexion-compression des poteaux confinés à l'aide de PRF. Les prochaines recherches pourront se baser sur ces résultats pour explorer d'autres paramètres expérimentaux et éventuellement proposer des articles de normes.
2

Analyse et Réduction de la Vulnérabilité Sismique des Structures Existantes : Renforcement par Collage de Tissus de Fibres de Carbone (TFC)

Desprez, Cédric 21 July 2010 (has links) (PDF)
La réduction de la vulnérabilité sismique des structures existantes est un enjeu majeur. Le renforcement d'éléments par Tissus de Fibres de Carbone (TFC) offre une réponse intéressante à cette problématique. Ces travaux proposent une stratégie simplifiée de modélisation non linéaire permettant de prédire le comportement d'une structure en béton armé renforcée par TFC. Celle-ci est fondée sur l'utilisation d'éléments finis poutres multifibres ainsi que de modèles d'endommagement et de plasticité. Le confortement d'éléments en flexion et le confinement des poteaux sont étudiés. Plus spécifiquement une loi constitutive cyclique pour béton confiné est proposée. Cette loi est fondée sur deux modèles, le premier basé sur la théorie de l'endommagement et le second sur une série d'études expérimentales. Cette approche est validée à travers deux cas d'études : une pile de pont renforcée et une analyse de vulnérabilité d'un ouvrage sous sollicitations statiques (poussée progressive) et dynamiques.
3

Comportement en compression de colonnes en béton renforcées d'armatures en PRF

Tobbi, Hany January 2012 (has links)
La corrosion des armatures internes en acier dans les structures en béton armé constitue une cause importante de dégradation, ce qui pourrait réduire significativement leur durée de vie, engendrer des coûts de maintenance élevés et mettre en danger la sécurité des usagers. Les basses températures en Amérique du Nord et l'utilisation des sels de déglaçage sont des facteurs accélérant l'apparition et le développement de la corrosion des armatures en acier. D'importants travaux de recherche ont été réalisés pour inhiber ou retarder ce type de dégradation. L'utilisation des Polymères Renforcés de Fibres (PRF) comme armature interne dans le béton est une solution très prometteuse. Les PRF ont d'excellentes propriétés mécaniques, un faible poids et ont l'avantage d'être non corrodables. L'utilisation de ces matériaux composites est maintenant élargie aux éléments structuraux et non structuraux soumis à des efforts de flexion et/ou de cisaillement et encadrée par les règlements canadiens de conception des bâtiments et des ponts. Cependant, l'utilisation des PRF dans les éléments structuraux soumis à des efforts de compression tels que les colonnes en béton n'est pas bien documentée et les performances structurales qu'engendre ce type d'association sont encore méconnues. Le travail présenté dans cette thèse a pour objectif, à travers une étude expérimentale, d'observer le comportement en compression de colonnes en béton comprenant des armatures longitudinale et transversale en PRF et faisant intervenir plusieurs paramètres. Le choix de paramètres pertinents permet de comprendre les mécanismes de résistance et de rupture de ce nouveau type d'éléments, et de faciliter la modélisation de leur comportement à travers des modèles analytiques simples, pouvant être utilisés par les ingénieurs-concepteurs. Le programme expérimental comprend 24 colonnes en béton avec des dimensions de 350x350x1400 mm, représentatives des colonnes d'usage dans le bâtiment. Parmi ces colonnes, une n'avait aucune armature, deux étaient entièrement renforcées avec de l'acier et les 21 colonnes restantes étaient confinées avec des armatures transversales en PRF, tandis que leur armature longitudinale était en PRF ou en acier. Plusieurs paramètres ont été étudiés, ces derniers sont liés majoritairement aux armatures transversales et à leur capacité à confiner le béton afin d'augmenter sa résistance en compression et sa déformabilité axiale (ductilité). Ainsi, deux types de cadres ont été utilisés, le premier dit "ouvert", était fait d'assemblage de parties en "C" et l'autre "fermé" découpé dans une spirale continue de forme carrée ou rectangulaire. Les armatures transversales avaient trois configurations plus ou moins complexes et qui dépendent du nombre de barres longitudinales qu'elles retiennent, leur matériau était en PRF de verre ou de carbone et différents espacements ont été utilisés. Les paramètres liés à l'armature longitudinale étaient le taux dans la section de béton ainsi que le type de matériau : des barres en PRF de verre, de carbone et en acier ont été utilisées. Les résultats des essais expérimentaux ont montré que le béton confiné avec des armatures transversales en PRF pouvait atteindre des gains significatifs en termes de résistance à la compression et en déformabilité axiale. Ces gains sont liés à la configuration et à l'espacement des armatures transversales, en effet plus ces dernières sont complexes (cadres multiples) et rapprochées, plus le gain est important. Dans certains cas, l'utilisation des PRF de carbone permet d'atteindre une plus grande résistance que dans les cas du verre. L'utilisation des cadres fermés assure aux colonnes un mode de rupture moins fragile que celui observé pour celles ayant des cadres ouverts. L'utilisation des armatures longitudinales en acier procure aux colonnes une plus grande ductilité comparativement aux barres en PRF. En ce qui concerne la modélisation et la prédiction des performances de ce nouveau type de colonnes, un modèle de confinement a été développé pour calculer la résistance à la compression du noyau de béton des colonnes confinées avec des PRF, une équation empirique permettant d'estimer la contribution des armatures longitudinales en PRF a été développée. De plus, d'autres équations ont aussi été proposées pour calculer la capacité portante des colonnes à des fins de conception, la contribution des barres longitudinales en PRF n'étant pas négligeable comme suggéré par le CSA S806.
4

Modélisation et simulation du comportement des bétons confinés / Simulation of the behaviour of confined concrete

Farahmandpour, Chia 04 December 2017 (has links)
Les techniques de renforcement de structures en béton armé (BA) par collage de polymères renforcés de fibres (PRF) trouvent un important champ d'applications dans le renforcement des poteaux en BA. Le chemisage par PRF confine le noyau du poteau et permet d'augmenter sa résistance et sa ductilité. Bien que de nombreux travaux expérimentaux aient été consacrés à l'étude de l'effet de confinement du PRF sur le comportement des poteaux en BA, la réalisation d'une simulation réaliste de la réponse structurelle de tels éléments présente de nombreuses difficultés liées aux modèles de comportement peu appropriés à reproduire précisément la réponse mécanique du béton confiné. Dans cette recherche, un modèle de comportement élasto-plastique endommageable est développé pour reproduire la réponse mécanique du béton sollicité suivant un chemin triaxial de contraintes. Ce modèle prend en compte différents mécanismes de comportement du béton tels que les déformations irréversibles, l'endommagement dû à la microfissuration, la sensibilité au confinement et les caractéristiques de dilatation. Un processus d'identification des paramètres du modèle est proposé sur la base d'essais classiques. La validation de ce modèle est ensuite démontrée en comparant des résultats de simulations à des données expérimentales de la littérature sur des bétons confinés activement puis des bétons confinés par des PRF présentant une large gamme de rigidité. Le modèle proposé est également comparé à différentes modélisations de la littérature. Les capacités du modèle sont illustrées et analysées sur des applications tridimensionnelles de poteaux en BA de taille réelle, non confinés et confinés par PRF. / For the past two decades, externally bonded Fiber Reinforced Polymers (FRP) has gained much popularity for seismic rehabilitation of reinforced concrete (RC) columns. In this technique, FRP wrap installed on the surface of a column acts as lateral confinement and enhance the strength and deformation capacity of the concrete element. Although many experimental works have been devoted to the study of confining effect of FRP on the behavior of RC columns, the numerical simulation of FRP-jacketed RC columns remains a challenging issue due to the lack of appropriate constitutive model for confined concrete. In this study, a damage plastic model is developed to predict the behavior of concrete under triaxial stress states. The proposed model takes into account different material behavior such as irreversible strain, damage due to microcracking, confinement sensitivity and dilation characteristic. A straightforward identification process of all model’s parameters is then presented. The identification process is applied to different normal strength concrete. The validity of the model is then demonstrated through confrontation of experimental data with simulations considering active confined concrete and FRP confined concrete with a wide range of confinement stiffness. The proposed constitutive model is also compared with other models from the literature and the distinguishing features of this new model are discussed. Furthermore, the capacity of the model in the three-dimensional finite element analysis of full-scale RC columns is demonstrate and discussed.

Page generated in 0.0675 seconds