1 |
一種基於BIC的B-Spline節點估計方式何昕燁, Ho, Hsin Yeh Unknown Date (has links)
在迴歸分析中,若變數間具有非線性的關係時,B-Spline線性迴歸是以無母數的方式建立模型。B-Spline函數為具有節點(knots)的分段多項式,選取合適節點的位置對B-Spline的估計有重要的影響,在近年來許多的文獻中已提出一些尋找節點位置的估計方法,而本文中我們提出了一種基於Bayesian information criterion(BIC)的節點估計方式。
我們想要深入了解在不同類型的迴歸函數間,各種選取節點方法的配適效果與模擬時間,並且加以比較,在使用B-Spline函數估計時,能夠使用合適的方法尋找節點。 / In regression analysis, when the relation between the response variable and the explanatory variable is nonlinear, one can use nonparametric methods to estimate the regression function.
B-Spline regression is one of the popular nonparametric regression methods. B-Splines are piecewise polynomial joint at knots, and the choice of knot locations is crucial.
Zhou and Shen (2001) proposed to use spatially adaptive regression splines (SARS), where the knots are estimated using a selection scheme. Dimatteo, Genovese, and Kass (2001) proposed to use Bayesian adaptive regression splines (BARS), where certain priors for knot locations are considered. In this thesis, a knot estimation method based on the Bayesian information criterion (BIC) is proposed, and simulation studies are carried out to compare BARS, SARS and the proposed BIC-based method.
|
Page generated in 0.0231 seconds