1 |
一種基於BIC的B-Spline節點估計方式何昕燁, Ho, Hsin Yeh Unknown Date (has links)
在迴歸分析中,若變數間具有非線性的關係時,B-Spline線性迴歸是以無母數的方式建立模型。B-Spline函數為具有節點(knots)的分段多項式,選取合適節點的位置對B-Spline的估計有重要的影響,在近年來許多的文獻中已提出一些尋找節點位置的估計方法,而本文中我們提出了一種基於Bayesian information criterion(BIC)的節點估計方式。
我們想要深入了解在不同類型的迴歸函數間,各種選取節點方法的配適效果與模擬時間,並且加以比較,在使用B-Spline函數估計時,能夠使用合適的方法尋找節點。 / In regression analysis, when the relation between the response variable and the explanatory variable is nonlinear, one can use nonparametric methods to estimate the regression function.
B-Spline regression is one of the popular nonparametric regression methods. B-Splines are piecewise polynomial joint at knots, and the choice of knot locations is crucial.
Zhou and Shen (2001) proposed to use spatially adaptive regression splines (SARS), where the knots are estimated using a selection scheme. Dimatteo, Genovese, and Kass (2001) proposed to use Bayesian adaptive regression splines (BARS), where certain priors for knot locations are considered. In this thesis, a knot estimation method based on the Bayesian information criterion (BIC) is proposed, and simulation studies are carried out to compare BARS, SARS and the proposed BIC-based method.
|
2 |
馬可夫鏈蒙地卡羅法在外匯選擇權定價的應用謝盈弘 Unknown Date (has links)
本篇論文以Regime Switching Stochastic Volatility(RSV)作為外匯選擇權市場的波動度模型,採用馬可夫鏈蒙地卡羅法(Markov Chain Monte Carlo)中的GibbS Sampling演算法估計RSV模型的參數,並預測外匯選擇權在RSV模型下的價格。
數值結果方面首先對GibbS Sampling參數估計的結果做討論,再對預測出的選擇權價格與Black and Scholes作比較,最後並提出笑狀波幅與隱含波動度平面的結果。
本研究所得到之結論:
1. RSV模型與MCMC模擬法的組合,具備產生笑狀波幅的能力,提供足夠證據顯示,RSV模型與MCMC演算法所計算出來的選擇權價格,確實反應且捕捉到了市場上選擇權價格所應具備的特色。
2. 本模型能有效解釋期限結構 (Term Stucture of Volatility)、笑狀波幅(Volatility Smile)的現象。
關鍵字:馬可夫鏈蒙地卡羅法、外匯選擇權、貝氏選擇權評價、MCMC、Regime switching Regine change、Gibbs Sampling、currency option、Markov Chain Montec Carlo
|
3 |
貝氏曲線同步化與分類 / Bayesian Curve Registration and Classification李柏宏, Lee,Po- Hung Unknown Date (has links)
函數型資料分析為近年發展的統計方法。函數型資料是在一段特定時間上,我們只在離散的時間點上收集觀測值。例如:氣象觀測站所收集到的每月氣溫、雨量資料,即是一種常見的函數型資料。函數型資料主要有三種特色,共同趨勢性、觀測個體反應強度不同,觀測個體時間特色上的差異。本文研究主要是使用,Brumback與Lindstrom在2004所提出的自模型迴歸族(self-modeling)當作模型架構來處理函數型資料的趨勢性與個體反應強度。而為了處理函數型資料的時間差異性,我們在模型中加入時間轉換函數(time transformation function),處理函數型資料的時間差異性步驟,這個過程稱為同步化。經過同步化的處理後,能幫助研究者更清楚資料的特性。模型中除了時間轉換函數的部份,其餘模型中的參數我們是利用馬可夫鏈蒙地卡羅法中的Gibbs Sampling來進行參數的抽樣,並以取出的抽樣值來估計參數。時間轉換函數的部份,我們使用概似懲罰函數(penalized likelihood function)來估計時間轉換函數的參數部份。由於函數型資料擁有趨勢性,我們預期不同類別的資料,會呈現不同的趨勢性,我們將利用此一特色當做分類上的標準。
關鍵詞:函數型資料分析、曲線同步化、曲線區別分析、馬可夫鏈蒙地卡羅法。 / Functional data are random curves observed in a period of time at discrete time points.They often exhibit a common shape, but with variations in amplitude and phase across curves.To estimate the common shape,some adjustment for synchronization is often made,which is also known as time warping or curve registration.In this thesis,splines are used to model the warping functions and the common shape. Certain parameters are allowed to be random.For the estimation of the random parameters,priors are proposed so that samples from the posteriors can be obtained using Markov chain Monte Carlo methods.For the estimation of non-random parameters, a penalized likelihood approach is used. It is found via simulation studies that for a set of random curves with a common shape,the estimated common shape function looks like the true function up to a location-scale transform,and the curve alignment based on estimated time warping functions looks reasonable.For two groups of random curves which differ in the group common shape functions,synchronization also improves the discrimination between groups in some cases.
Key words: functional data analysis,curve registration,curve discrimination,markov chain monte carlo method.
|
4 |
馬可夫鏈蒙地卡羅收斂的研究與貝氏漸進的表現 / A study of mcmc convergence and performance evaluation of bayesian asymptotics許正宏, Hsu, Cheng Hung Unknown Date (has links)
本論文主要討論貝氏漸近的比較,推導出參數的聯合後驗分配與利用圖形來診斷馬可夫鏈蒙地卡羅的收斂。Johnson (1970)利用泰勒展開式得到個別後驗分配的展開式,此展開式是根據概似函數與先驗分配。 Weng (2010b) 和 Weng and Hsu (2011) 利用 Stein’s 等式且由概似函數與先驗分配估計後驗動差;將這些後驗動差代入Edgeworth 展開式得到近似後驗分配,此近似分配的誤差可精確到大O的負3/2次方與Johnson’s 相同。另外Weng and Hsu (2011)發現Weng (2010b) 和Johnson (1970)的近似展開式各別項誤差到大O的負1次方不一致,由模擬結果得到Weng’s 在此項表現比Johnson’s 好。另外由Weng (2010b)得到一維參數 的Edgeworth 近似後驗分配延伸到二維參數的聯合後驗分配;並應用二維參數的聯合後驗分配於多階段資料。本論文我們提出利用圖形來診斷馬可夫鏈蒙地卡羅收斂的方法,並且應用一般化線性模型與混合常態模型做為模擬。
關鍵字: Edgeworth 展開式;馬可夫鏈蒙地卡羅;個別後驗分配;Stein’s 等式 / Johnson (1970) obtained expansions for marginal posterior
distributions through Taylor expansions. The expansion in
Johnson (1970) is expressed in terms of the likelihood and the prior. Weng (2010b) and Weng and Hsu (2011) showed that by using
Stein's identity we can approximate the posterior moments in terms
of the likelihood and the prior; then substituting these
approximations into an Edgeworth series one can obtain an expansion
which is correct to O(t{-3/2}), similar to Johnson's.
Weng and Hsu (2011) found that the O(t{-1}) terms in
Weng (2010b) and Johnson (1970) do not agree and further
compared these two expansions by simulation study. The simulations
confirmed this finding and revealed that our O(t{-1}) term gives
better performance than Johnson's. In addition to the comparison of
Bayesian asymptotics, we try to extend Weng (2010a)'s Edgeworth
series for the distribution of a single parameter to the joint
distribution of all parameters. Since the calculation is quite
complicated, we only derive expansions for the two-parameter case
and apply it to the experiment of multi-stage data. Markov Chain
Monte Carlo (MCMC) is a popular method for making Bayesian
inference. However, convergence of the chain is always an issue.
Most of convergence diagnosis in the literature is based solely on
the simulation output. In this dissertation, we proposed a graphical
method for convergence diagnosis of the MCMC sequence. We used some
generalized linear models and mixture normal models for simulation
study. In summary, the goals of this dissertation are threefold: to
compare some results in Bayesian asymptotics, to study the expansion
for the joint distribution of the parameters and its applications,
and to propose a method for convergence diagnosis of the MCMC sequence.
Key words: Edgeworth expansion; Markov Chain Monte Carlo;
marginal posterior distribution; Stein's identity.
|
5 |
貝氏時間與空間統計模式之應用黃佩櫻 Unknown Date (has links)
本篇論文的目的在介紹階層貝氏之時間與空間統計模式(spatio-temporal model),將此模式應用在疾病地圖的分析,以了解疾病在空間上的分佈狀態與時間趨勢。模型中除了納入時間、空間和年齡的效應外,也包括時間與空間、時間與年齡的交互作用,並考慮到空間相關性(spatial correlation),然後以DIC值(Deviance information criterion)作為模式選取的準則。
本文並以民國88-90年全身紅斑性狼瘡的女性患病人數做為實證分析的資料。配適時間與空間統計模式後,以馬可夫鏈蒙地卡羅法(MCMC)來模擬參數值,估計出各時間、地區、年齡層的對數疾病發生率。由疾病地圖可看出,台灣地區全身紅斑性狼瘡的女性疾病發生率,以20-59歲的年齡層發生率較高,0-19歲的發生率較低。不管在哪一個年齡層,北部和中部地區的發生率都是最高的。時間趨勢方面,88-90年整體疾病發生率有遞減的趨勢,60歲以上的發生率也是遞減的趨勢。但在部分地區,則有發生率遞增的趨勢。 / In this study, we introduce the spatio-temporal model in a hierarchical Bayesian framework and use disease maps to display the spatial patterns and the temporal trends of disease. A special feature of the model is the inclusion of spatial correlations used to examine spatial effects relative to both regional and regional changes over time by group. Then, we use deviance information criterion (DIC) to compare complex hierarchical models.
The methodology is illustrated by an analysis of female Systemic Lupls Erythematosus (SLE) morbidity data in Taiwan during the period 1999-2001.The model inference is implemented using Markov chain Monte Carlo method. The outcomes of the practical analysis appear that the higher morbidity rate occurs in 20-year and 40-year period. No matter what age group, the morbidity rate is highest in the north and the middle of Taiwan. Furthermore, the morbidity rate decreases with respect to year as well as over the 60-year period but it increases in some places.
|
6 |
用馬可夫鏈蒙地卡羅法估計隨機波動模型:台灣匯率市場的實證研究賴耀君, Lai,Simon Unknown Date (has links)
針對金融時序資料變異數不齊一的性質,隨機波動模型除了提供於ARCH族外的另一選擇;且由於其設定隱含波動本身亦為一個隨機波動函數,藉由設定隨時間改變且自我相關的條件變異數,使得隨機波動模型較ARCH族來得有彈性且符合實際。傳統上處理隨機波動模型的參數估計往往需要面對到複雜的多維積分,此問題可藉由貝氏分析裡的馬可夫鏈蒙地卡羅法解決。本文主要的探討標的,即在於利用馬可夫鏈蒙地卡羅法估計美元/新台幣匯率隨機波動模型參數。除原始模型之外,模型的擴充分為三部分:其一為隱含波動的二階自我回歸模型;其二則為藉由基本模型的修改,檢測匯率市場上的槓桿效果;最後,我們嘗試藉由加入scale mixture的方式以驗證金融時序資料中常見的厚尾分配。
|
7 |
競爭風險下長期存活資料之貝氏分析 / Bayesian analysis for long-term survival data蔡佳蓉 Unknown Date (has links)
當造成失敗的原因不只一種時,若各對象同一時間最多只經歷一種失敗原因,則這些失敗原因稱為競爭風險。然而,有些個體不會失敗或者經過治療之後已痊癒,我們稱這部分的群體為治癒群。本文考慮同時處理競爭風險及治癒率的混合模式,即競爭風險的治癒率模式,亦將解釋變數結合到治癒率、競爭風險的條件失敗機率,或未治癒下競爭風險的條件存活函數中,並以建立在完整資料上之擴充的概似函數為貝氏分析的架構。對於右設限對象則以插補方式決定是否會治癒或會因何種風險而失敗,並推導各參數的完全條件後驗分配及其性質。由於邊際後驗分配的數學形式無法明確呈現,再加上需對右設限者判斷其狀態,所以採用屬於馬可夫鏈蒙地卡羅法的Gibbs抽樣法及適應性拒絕抽樣法(adaptive rejection sampling) ,執行參數之模擬抽樣及設算右設限者之治癒或失敗狀態。實證部分,我們分析Klein and Moeschberger (1997)書中骨髓移植後的血癌病患的資料,並用不同模式之下的參數模擬值計算各對象之條件預測指標(CPO),換算成各模式的對數擬邊際概似函數值(LPML),比較不同模式的優劣。 / In case that there are more than one possible failure types, if each subject experiences at most one failure type at one time, then these failure types are called competing risks. Moreover, some subjects have been cured or are immune so they never fail, then they are called the cured ones. This dissertation discusses several mixture models containing competing risks and cure rate. Furthermore, covariates are associated with cure rate, conditional failure rate of each risk, or conditional survival function of each risk, and we propose the Bayesian procedure based on the augmented likelihood function of complete data. For right censored subjects, we make use of imputation to determine whether they were cured or failed by which risk and derive full conditional posterior distributions. Since all marginal posterior distributions don’t have closed forms and right censored subjects need to be identified their statuses, we take Gibbs sampling and adaptive rejection sampling of Markov chain Monte Carlo method to simulate parameter values. We illustrate how to conduct Bayesian analysis by using the bone marrow transplant data from the book written by Klein and Moeschberger (1997). To do model selection, we compute the conditional predictive ordinate(CPO) for every subject under each model, then the goodness is determined by the comparing the value of log of pseudo marginal likelihood (LMPL) of each model.
|
8 |
含存活分率之貝氏迴歸模式李涵君 Unknown Date (has links)
當母體中有部份對象因被治癒或免疫而不會失敗時,需考慮這群對象所佔的比率,即存活分率。本文主要在探討如何以貝氏方法對含存活分率之治癒率模式進行分析,並特別針對兩種含存活分率的迴歸模式,分別是Weibull迴歸模式以及對數邏輯斯迴歸模式,導出概似函數與各參數之完全條件後驗分配及其性質。由於聯合後驗分配相當複雜,各參數之邊際後驗分配之解析形式很難表達出。所以,我們採用了馬可夫鏈蒙地卡羅方法(MCMC)中的Gibbs抽樣法及Metropolis法,模擬產生參數值,以進行貝氏分析。實證部份,我們分析了黑色素皮膚癌的資料,這是由美國Eastern Cooperative Oncology Group所進行的第三階段臨床試驗研究。有關模式選取的部份,我們先分別求出各對象在每個模式之下的條件預測指標(CPO),再據以算出各模式的對數擬邊際概似函數值(LPML),以比較各模式之適合性。 / When we face the problem that part of subjects have been cured or are immune so they never fail, we need to consider the fraction of this group among the whole population, which is the so called survival fraction. This article discuss that how to analyze cure rate models containing survival fraction based on Bayesian method. Two cure rate models containing survival fraction are focused; one is based on the Weibull regression model and the other is based on the log-logistic regression model. Then, we derive likelihood functions and full conditional posterior distributions under these two models. Since joint posterior distributions are both complicated, and marginal posterior distributions don’t have closed form, we take Gibbs sampling and Metropolis sampling of Markov Monte Carlo chain method to simulate parameter values. We illustrate how to conduct Bayesian analysis by using the data from a melanoma clinical trial in the third stage conducted by Eastern Cooperative Oncology Group. To do model selection, we compute the conditional predictive ordinate (CPO) for every subject under each model, then the goodness is determined by the comparing the value of log of pseudomarginal likelihood (LPML) of each model.
|
Page generated in 0.0166 seconds