Spelling suggestions: "subject:"gibbs 抽樣法"" "subject:"hibbs 抽樣法""
1 |
兩個二段式指數分配比較之研究 / Comparison of two exponential distributions with a change point賴武志, Lai, Wu Chih Unknown Date (has links)
在存活分析中,含有轉折點的指數分配(又稱二段式指數分配)的模式,常被拿來研究某些疾病的復發率,以決定其治療方式是否有效。然而在文獻上,對這一個模式的探討大都局限在單一母體上,其問題不外乎有兩個:一是檢定此一轉折點是否存在;二是估計此一轉折點。
本文將此一問題擴充,從一個母體提昇至兩個母體,比較兩個母體是否具有相同的轉折點、起始危險率或轉換率。基本上,我們使用了貝氏方法和古典方法來分析。
我們利用貝氏方法,推導出兩個母體在不同的已知條件下,各母數比值或差值的事後分配。但是他們的形式幾乎都很複雜,使得欲做進一步的分析,困難重重。因此,我們引進了 Gibbs 抽樣法,利用各完全條件事後分配,萃取出各邊際事後分配,以供推論之用。
而在古典分析中,我們係採用概似比值檢定法。而最大的問題在於轉折點未知時,我們不知其對數概似比的分配為何。我們除了介紹兩個文獻中估計轉折點的方法,我們更利用了自助法 (bootstrap) 來估計其對數概似比的分配,以供檢定之用。
對於這樣兩母體的比較,在醫學上、工業上甚具意義。本文不僅推導出其供比較用的統計架構,更提供了具體而實用的抽樣方法, 對這問題的分析,頗具貢獻。
|
2 |
二篇有關股票價格平均數復歸的實證研究 / Two Essays on Mean Reversion Behavior of Stock Price in Taiwan阮建銘, Ruan, Jian-Ming Unknown Date (has links)
本論文是二篇探討與股票價格平均數復歸現象有關的實證文章。在第一篇文章中,我們將探討由於廠商特質所產生資金供需雙方訊息的非對稱,而引發的流動性限制對廠商股票價格行為的潛在影響;在第二篇文章中,我們研究的課題是在漲跌幅限制下,交易量與股票報酬自我相關的關係。 第一篇文章主要在探討由於廠商特質所產生資金供需雙方訊息的非對稱,而引發的流動性限制對廠商股票價格行為的影響。我們利用五個廠商特質-所有權結構、集團企業成員、上市時間、公司規模與現金股利的發放,定義面臨流動性限制的廠商,並使用變異數比率衡量股票價格平均數復歸的現象,由於小樣本的問題,我們將利用拔靴法檢定假說:廠商的流動性限制會強化其股票價格平均數復歸的行為。我們的實證結果並不一致,所有權結構、公司規模和集團企業成員的分組實證結果支持我們的假說,流動性限制會強化平均數復歸的行為;而上市時間與現金股利發放的分組實證結果並不支持我們的假說。 在第二篇文章中,我們使用與Campbell et. al. (1993)相同的實證模型,討論在漲跌幅限制下,交易量與股票日報酬自我相關的關係。由於漲跌幅限制的存在,當股票價格觸及漲跌幅上下限時,即停止交易,而使得真正的股票價格無法觀察到,因而未實現之需求或供給將會傳遞至下一個交易日,將使傳統OLS或其衍生方法的估計產生偏誤,而使用Chou和Chib (1995)與Chou (1995)所提的Gibbs抽樣法則可以成功地克服這些困難。所以,本文將應用Chou和Chib (1995)與Chou (1995)的Gibbs抽樣法來衡量台灣股票市場交易量對股票日報酬自我相關係數的影響,以避免漲跌幅限制的影響。本文採用台灣證交所編製的綜合股價指數所採樣的二十四家公司為樣本,利用日資料進行實證分析,實證結果支持「交易量效果」的存在。且在實證過程中,發現台灣股票市場股票日報酬的正自我相關有可能是漲跌幅限制的存在而造成的。
|
3 |
隨機波動模型(stochastic volatility model)--台幣匯率短期波動之研究 / Stochastic volatility model - the study of the volatility of NT exchange rate in the short run王偉濤, Wang, Wei-Tao Unknown Date (has links)
No description available.
|
4 |
競爭風險下長期存活資料之貝氏分析 / Bayesian analysis for long-term survival data蔡佳蓉 Unknown Date (has links)
當造成失敗的原因不只一種時,若各對象同一時間最多只經歷一種失敗原因,則這些失敗原因稱為競爭風險。然而,有些個體不會失敗或者經過治療之後已痊癒,我們稱這部分的群體為治癒群。本文考慮同時處理競爭風險及治癒率的混合模式,即競爭風險的治癒率模式,亦將解釋變數結合到治癒率、競爭風險的條件失敗機率,或未治癒下競爭風險的條件存活函數中,並以建立在完整資料上之擴充的概似函數為貝氏分析的架構。對於右設限對象則以插補方式決定是否會治癒或會因何種風險而失敗,並推導各參數的完全條件後驗分配及其性質。由於邊際後驗分配的數學形式無法明確呈現,再加上需對右設限者判斷其狀態,所以採用屬於馬可夫鏈蒙地卡羅法的Gibbs抽樣法及適應性拒絕抽樣法(adaptive rejection sampling) ,執行參數之模擬抽樣及設算右設限者之治癒或失敗狀態。實證部分,我們分析Klein and Moeschberger (1997)書中骨髓移植後的血癌病患的資料,並用不同模式之下的參數模擬值計算各對象之條件預測指標(CPO),換算成各模式的對數擬邊際概似函數值(LPML),比較不同模式的優劣。 / In case that there are more than one possible failure types, if each subject experiences at most one failure type at one time, then these failure types are called competing risks. Moreover, some subjects have been cured or are immune so they never fail, then they are called the cured ones. This dissertation discusses several mixture models containing competing risks and cure rate. Furthermore, covariates are associated with cure rate, conditional failure rate of each risk, or conditional survival function of each risk, and we propose the Bayesian procedure based on the augmented likelihood function of complete data. For right censored subjects, we make use of imputation to determine whether they were cured or failed by which risk and derive full conditional posterior distributions. Since all marginal posterior distributions don’t have closed forms and right censored subjects need to be identified their statuses, we take Gibbs sampling and adaptive rejection sampling of Markov chain Monte Carlo method to simulate parameter values. We illustrate how to conduct Bayesian analysis by using the bone marrow transplant data from the book written by Klein and Moeschberger (1997). To do model selection, we compute the conditional predictive ordinate(CPO) for every subject under each model, then the goodness is determined by the comparing the value of log of pseudo marginal likelihood (LMPL) of each model.
|
5 |
含存活分率之貝氏迴歸模式李涵君 Unknown Date (has links)
當母體中有部份對象因被治癒或免疫而不會失敗時,需考慮這群對象所佔的比率,即存活分率。本文主要在探討如何以貝氏方法對含存活分率之治癒率模式進行分析,並特別針對兩種含存活分率的迴歸模式,分別是Weibull迴歸模式以及對數邏輯斯迴歸模式,導出概似函數與各參數之完全條件後驗分配及其性質。由於聯合後驗分配相當複雜,各參數之邊際後驗分配之解析形式很難表達出。所以,我們採用了馬可夫鏈蒙地卡羅方法(MCMC)中的Gibbs抽樣法及Metropolis法,模擬產生參數值,以進行貝氏分析。實證部份,我們分析了黑色素皮膚癌的資料,這是由美國Eastern Cooperative Oncology Group所進行的第三階段臨床試驗研究。有關模式選取的部份,我們先分別求出各對象在每個模式之下的條件預測指標(CPO),再據以算出各模式的對數擬邊際概似函數值(LPML),以比較各模式之適合性。 / When we face the problem that part of subjects have been cured or are immune so they never fail, we need to consider the fraction of this group among the whole population, which is the so called survival fraction. This article discuss that how to analyze cure rate models containing survival fraction based on Bayesian method. Two cure rate models containing survival fraction are focused; one is based on the Weibull regression model and the other is based on the log-logistic regression model. Then, we derive likelihood functions and full conditional posterior distributions under these two models. Since joint posterior distributions are both complicated, and marginal posterior distributions don’t have closed form, we take Gibbs sampling and Metropolis sampling of Markov Monte Carlo chain method to simulate parameter values. We illustrate how to conduct Bayesian analysis by using the data from a melanoma clinical trial in the third stage conducted by Eastern Cooperative Oncology Group. To do model selection, we compute the conditional predictive ordinate (CPO) for every subject under each model, then the goodness is determined by the comparing the value of log of pseudomarginal likelihood (LPML) of each model.
|
Page generated in 0.0431 seconds