141 |
Catalytic hydrogenation of alpha-methylstyrene in liquid phase in stirred reactorJohnson, Douglas Lewellyn, January 1956 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1956. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 184-188).
|
142 |
Theoretical studies on reactions of late transition metal complexes and stabilities of osmabenzynes /Ng, Sze Ming. January 2002 (has links)
Thesis (M. Phil.)--Hong Kong University of Science and Technology, 2002. / Includes bibliographical references. Also available in electronic version. Access restricted to campus users.
|
143 |
Derivatives of 5-aceto carvacryl methyl ether. Relation between molecular structure and odor of 1,2,4,5 substituted benzenes ...Goldstein, Israel, January 1927 (has links)
Thesis (Ph. D.)--Columbia University, 1928. / Vita. Bibliography: p. 23.
|
144 |
Quantitatief onderzoek over de nitratie van ortho-chloorjoodbenzeen en van ortho-chloorbroombenzeen ...Wallagh, Gerrit Willem Abraham. January 1900 (has links)
Proefschrift--Amsterdam. / Includes bibliographical references.
|
145 |
Preparation and characterization of nano-gold catalysts supported on ceria-based materials for carbon monoxide and benzene complete oxidationQiu, Yongfu 01 January 2005 (has links)
No description available.
|
146 |
A study of the Birch reduction of m-MethoxybenzamideDickson, Luther 01 January 1968 (has links)
This thesis is (1) an investigation in the identity of the unknown material Qazi (20) obtained when benzamide was reduced at the boiling point of ammonia with 3.3 equivalents of sodium and ethanol, (2) characterization of the components of the brown liquid obtained when m-methoxybenzamide was reduced with a large excess of sodium (8 equivalents of more), and (3) characterization of the compound formed when the latter is subjected to sudden heat.
|
147 |
Identification of Genes Induced under Anaerobic Benzene-Oxidizing Conditions in Dechloromonas aromatica strain RCBGon, Rikhi 01 December 2010 (has links) (PDF)
Benzene (C 6H6) is the simplest member of the aromatic hydrocarbon group of chemical compounds. Minute amounts of benzene are naturally released into the environment during volcanic eruptions and forest fires. This extremely stable aromatic compound is also an important industrial chemical and is an integral component of many petroleum products. In fact, benzene is amongst the top 20 in production volume for chemicals produced in the United States. Therefore, it is not surprising that the major reason for environmental contamination through benzene is by anthropogenic sources. Benzene is relatively soluble in water and migrates very quickly in the soil after its entry. The Environmental Protection Agency (EPA) has classified benzene as a Class A carcinogen. Microorganisms play an integral role in the natural attenuation of benzene from the environment. Biodegradation of benzene by oxidation can occur under aerobic, anaerobic and microaerophilic conditions. Biooxidation of benzene under aerobic conditions is well-studied. However, oxygen is scarce in contaminated subsurface environments, and after the aerobic breakdown of benzene, oxygen is quickly depleted from the most heavily contaminated regions leading to the development of extensive anaerobic zones. As a result, there is increased focus on anaerobic benzene degradation as a potential bioremediation technique in anoxic subsurface environments. In aerobic and microaerophilic environments, monooxygenase and dioxygenase enzyme systems have been established to be involved in the breakdown of the benzene ring. However, the genes and enzymes involved in anaerobic benzene oxidation pathway are still unknown. In the present study, Dechloromonas aromatica strain RCB, capable of benzene oxidation with nitrate as the electron acceptor, was used as a model system to investigate the initial steps of the anaerobic benzene oxidation pathway. Strain RCB is capable of completely mineralizing benzene to carbon dioxide in denitrifying conditions. RNA-arbitrarily primed polymerase chain reaction (RAP-PCR), a differential gene expression technique used to randomly reverse-transcribe RNA into cDNA, was conducted to identify genes exclusively expressed during nitrate-dependent benzene oxidation. A total of seven genes were identified as differentially expressed in the presence of benzene using the RAP-PCR approach. Four differentially expressed genes were confirmed by a second method, semiquantitative reverse transcriptase PCR (RT-PCR). Microarray analysis was the second expression analysis technique conducted to identify genes expressed during benzene-oxidizing conditions. Based on fold induction and potential function, six genes were selected from the microarray data and their differential expression was confirmed by using semiquantitative RT-PCR. Interestingly, Daro1556, encoding a hypothetical protein, was identified by both RAP-PCR and microarray analysis. In order to verify the functions of the genes (selected from RAP-PCR and microarray analysis) in nitrate-dependent benzene oxidation, six deletion mutants were constructed in which the target gene was replaced by a tetracycline cassette. The correct insertion of the tetracycline cassette in the mutant genome was confirmed by PCR and Southern blotting. Microarray results were further analyzed by using an unsupervised clustering approach, k-means. A couple of genes (Daro1358 and Daro1359) obtained from cluster analysis were also verified by semiquantitative RT-PCR. These two genes, part of the same operon, encode a two-component monooxygenase system, which is a member of the Rieske non-heme iron aromatic ring-hydroxylating oxygenase family of proteins. In the present investigation, for the first time, involvement of a monooxygenase system (Daro1358 and Daro1359) during benzene oxidation with nitrate reduction was observed. Based on the results obtained from k-means cluster analysis, a model was hypothesized for anaerobic benzene oxidation with nitrate as the electron acceptor in Dechloromonas aromatica strain RCB.
|
148 |
Catalyst fouling in a zeolite-catalyzed alkylation.Tan, Chiong Heng. January 1969 (has links)
No description available.
|
149 |
Vapour-liquid equilibria of benzene and cyclohexane with CO2Sejnoha, Milena. January 1986 (has links)
No description available.
|
150 |
Study of Preventing Oxidative Degradation of Monoethanolamine, and Benzene Adsorption onto Tetraethylenepentamine-impregnated Silica SurfaceWilfong, Walter Christopher 26 August 2010 (has links)
No description available.
|
Page generated in 0.0342 seconds