• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of Underfill on Ball Grid Array (BGA) Package Fatigue Life

Chilakamarthi, Geetha 21 May 2004 (has links)
The influence of underfill material properties on the fatigue life of Ball Grid Array (BGA) packages that are subjected to thermal cycling is investigated in this study. A finite element model is created using Ansys by assuming the existence of an infinite array of solder interconnects, cylindrical in shape, surrounded by underfill material. Axial stresses in the interconnects are determined as a temperature loading is applied. The results show that these normal stresses are on the same order of magnitude as the hydrostatic compressive stresses induced in the solder upon underfill curing. Therefore it is concluded that for the range of underfill properties tested, these Mode I cyclic stresses need to be considered in the development of a fracture-based fatigue life model. In addition, a guideline is provided to aide researchers in designing experiments that will replicate loads on fractured specimens that are consistent with those seen in aerospace applications.
2

Quality assessments of solder bump interconnections in ball grid array packages using laser ultrasonics and laser interferometer

Gong, Jie 27 May 2016 (has links)
Surface mount devices (SMDs), such as flip chip packages and ball grid array (BGA) packages are gaining in popularity in microelectronics industry because they provide high density inputs/outputs, better electrical and thermal performance. However, these solder bump interconnections in SMDs are sandwiched between the silicon die and the substrate, which makes them challenging to be inspected. Current non-destructive solder bump inspection techniques like electrical testing, X-ray and acoustic microscopy have some application gaps. New solder bump inspection technique is urgently needed to fill these gaps. Previous work has shown the potential of using a non-contact, non-destructive laser ultrasonics and laser interferometer based inspection system for assessing solder bump qualities. The system uses a pulsed Nd:YAG laser to induce ultrasound in the chip packages and a laser interferometer to measure the transient out-of-plane displacement on the package surface. The quality of the solder bumps can be evaluated by analyzing the out-of-plane displacement. However, there are still some gaps that need to be addressed before the system is ready on the shelf. This dissertation focuses on addressing some of these existing issues. The research work consists of the following: 1) a control interface was developed to integrate all the different modules to achieve automation. 2) a new signal-processing method for analyzing the transient out-of-plane displacement signals without requiring a known-good reference chip was developed. 3) the application scope of the system was expanded to inspect the second level solder bumps in BGA packages. Two types of process-induced defects including poor-wetting and solder bump voids were investigated. Meanwhile, solder bump fatigue caused by cyclic mechanical bending and thermal cycle was also studied using this system. 4) a finite element analysis was performed to study the thermo-mechanical reliability of solder bumps in PBGA package under cyclic thermal loads. The successful completion of the research objectives has led to a laser ultrasound solder bump inspection system prototype with more user-friendliness, higher throughputs, better repeatability and more flexibility, which accelerate the commercialization the system.
3

Optimalizace faktorů ovlivňujících spolehlivost pájení moderních elektronických pouzder / Optimization of Factors that Affects the Reliability of Soldering of Modern Electronic Packages

Otáhal, Alexandr January 2020 (has links)
The work deals with research and development of a new method for ball-attach process, resp. reballing process of solder bumps on package with solder ball terminals (BGA, CSP, SOP, etc.), based on research and optimization of the parameters of the final terminals. The output is specially modified templates designed for placement of solder balls before reflow soldering. Three materially different templates were investigated in the work, in addition to the commonly used stainless steel, two other newly designed templates, which used ceramic materials (96% Al2O3a AlN) with thick-layer resistance heating. Proven advantages of the method using templates directly heated by electric current are the reduction of the thermal load of BGA packages in the first soldering process, as well as the creation of a better connection between the metallization of the case and the solder ball after final soldering to the printed circuit board. During the research, development and optimization of the method, tests of the created solder bumps were performed from the point of view of mechanical strength and internal structure. In the next part of the work, a research of solder bumps soldered using infrared heaters was performed in order to determine the influence of the heat flow direction in the process of reflow soldering. The heaters were successively placed in three positions, i.e. heating from the bottom of the housing, heating from the top and both heaters simultaneously. After sample preparation, metallographic cuttings and etching, the analysis of the internal structure of the entire solder ball and the intermetallic layer at the interface of the solder and the solder pad was performed. The work represents not only a new method of soldering solder bumps, but also new knowledge to create their internal structure, which contributes to meeting the increasingly demanding requirements to achieve the required reliability and quality.

Page generated in 0.0206 seconds