• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 4
  • 1
  • 1
  • Tagged with
  • 23
  • 8
  • 8
  • 7
  • 7
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The cloning, characterisation and engineering of an IGF-I-BINDING single chain Fv

Roberts, Anthony Simon January 2004 (has links)
This thesis describes the construction and characterisation of an insulin-like growth factor (IGF-I)-binding single chain Fv (scFv) and the utilisation of this scFv as a model protein for the study of the application of DNA shuffling and ribosome display to antibody engineering. The variable domain genes were isolated from the hybridoma cell line producing the monoclonal antibody and successfully joined by PCR for the construction of the scFv, named anti-GPE. Sequencing of the gene revealed an unusually short heavy chain CDR2 region. The cloned scFv was expressed in E. coli and purified. Expression levels were low and the protein has poor solubility, most likely due to a reduction in folding efficiency caused by the abbreviated CDR2. The purified monomeric form of the protein was analysed for binding to IGF-I using surface plasmon resonance on the BIAcore 1000 with the specificity of the IgG version of the antibody for the three N-terminal residues of IGF-I - Gly-Pro-Glu - reproduced. The scFv's calculated dissociation constant of 3.68 µM is a low affinity for an antibody and is approximately 36-fold weaker than was calculated for the Fab version of the antibody, but it is concluded that the calculated affinity for the scFv was an apparent affinity that may be an underestimation of true affinity due to the presence of non-functional or misfolded scFv species within the gel-filtration purified monomer peaks. A mutant version of anti-GPE with residues inserted in the CDR2 to restore it to normal length produced a protein with improved expression and solubility characteristics while retaining IGF-I-binding. It was concluded that the short CDR2 was due to deletions generated during the somatic mutation process and a model for this is described. A ribosome display method using a rabbit reticulocyte lysate as a source of ribosomes was developed for specific selection of anti-GPE against IGF-I. Error prone PCR was used to produce a random point mutated library of anti-GPE (EPGPE). This was taken through several cycles of display and selection but selection for non-specifically binding scFvs was commonly observed. This was probably due to poor folding of ribosome-displayed proteins in the system used, possibly caused by the presence of DTT in the lysate and/or the low capacity of the anti-GPE framework to tolerate mutation while retaining stability. It is assumed misfolds, exposing hydrophobic regions, would have a tendency to non-specifically interact with the selection surface. Of the 64 EPGPE clones screened from four rounds of display and selection, many were shown to have poor or non-specific binding, but one scFv was characterised that was affinity matured 2.6-fold over anti-GPE wild type affinity for IGF-I. A DNA shuffling method was developed to produce libraries of chimaeric scFvs between anti-GPE and NC10 (anti-neuraminidase scFv) with the objective of isolating functional IGF-I-binding chimaeras. The NC10 scFv had its CDRs replaced with the anti-GPE CDRs prior to the shuffling to increase the likelihood of isolating IGF-I binders. Ribosome display was used for selection from the chimaera libraries. Selection strategies included elution of specific binders by GPE peptide and a GPE 10-mer peptide. Selection was also performed using IGF-I immobilised on a BIAcore sensorchip as a selection surface. Again, much non-specific selection was observed as seen for display of EPGPE, for what was expected to be the same reasons. Selected scFvs were genuinely chimaeric but with poor expression and solubility and mostly non-specific in their binding. One characterised selected chimaera, made up of three segments of each of the parental scFvs, was shown to bind specifically to IGF-I by BIAcore. Steps to improve the efficiency of the ribosome display system have been identified and are discussed.
22

Development of a label-free biosensor method for the identification of sticky compounds which disturb GPCR-assays

Mohammed Kader, Hamno January 2013 (has links)
It is widely known that early estimates about the binding properties of drug candidates are important in the drug discovery process. Surface plasmon resonance (SPR) biosensors have become a standard tool for characterizing interactions between a great variety of biomolecules and it offers a unique opportunity to study binding activity. The aim of this project was to develop a SPR based assay for pre-screening of low molecular weight (LMW) drug compounds, to enable filtering away disturbing compounds when interacting with drugs. The interaction between 47 LMW compounds and biological ligands were investigated using the instrument BiacoreTM, which is based on SPR-technology.
23

Towards the Development of Synergistic Inhibitors that Exploit the Replication Strategy of HIV-1

Pattenden, Leonard Keith January 2005 (has links)
HIV-1 has evolved with a great deal of functional complexity contained within a very small genome by encoding small, but critical viral proteins within larger viral genes and dividing the replication cycle into early and late phases to differentially produce all proteins leading to efficient replication and virion release. Early replication is restricted by the host spliceosome that processes HIV-1 vRNA transcripts so only the small intragenomic proteins are produced, one of which is Rev (Regulator of Virion Expression). Rev in turn governs the transition from early to late replication by interacting with a highly structured region of vRNA termed the Rev Response Element (RRE). The binding of Rev to the RRE is believed to cause a change in the vRNA tertiary structure and inhibition of splicing of the vRNA. Once, a Rev:RRE complex is formed, a nuclear export signal within Rev facilitates the export of partially spliced and unspliced vRNA to the cytoplasm. During late replication the partially spliced and unspliced vRNA is translated to polyproteins and is packaged into a budding virion where the viral aspartyl protease (HIV-1 PR) autocatalytically excises itself from the larger polyprotein and processes the remaining polyproteins to release all viral structural and functional proteins to form a mature and infectious virion. Since the vRNA salvaged by Rev is translated to the polyproteins containing HIV-1 PR, the inhibition of Rev function will reduce the amount of HIV-1 PR available and thereby reduce the amount of HIV-1 PR therapeutics required to elicit a clinical effect. Therfore a combination approach to HIV-1 treatment using suitably developed therapeutics that inhibit Rev and HIV-1 PR function represents an attractive synergistic approach to treating HIV-1 infection in vivo. The work of this thesis was divided into two parts, the first part was concerned with HIV-1 PR structural biology and addressing problems encountered with inhibitor design. A bicyclic peptide (based on inhibitors of analogous structure) was co-crystallised with active HIV-1 PR to develop an enzyme-product (E-P) complex and with a catalytically inactive mutant HIV-1 PR to provide an analogy to the enzyme-substrate (E-S) complex. Both structures of the E-P and E-S complexes were solved to 1.6Å resolution and were compared to a hydroxyethylamine isostere enzyme-inhibitor complex (E-I), highlighting the similarity of binding mode for all ligands. The inhibitor in the E-I complex was translated towards the S1 - S3 pockets of the substrate binding cleft relative to the substrate in the E-S complex due to the increased length of the hydroxylethylamine isostere compared to the peptide backbone, although the inhibitor "puckered" the isostere linkage and maintains a binding mode similar to the substrate with very little overall differences in the position of the ligands and surrounding protein. The similarity of the E-S, E-I and E-P complexes was attributed to the macrocyclic ligands ordering the surrounding protein environment, especially the protein -strand "flap" structures that form a roof over the ligands in the active site but were not found to close more tightly in any of the trapped catalytic states. The new structures allowed refinement of details of the mechanism of peptide hydrolysis. The mechanism relies on the optimal nucleophilic attack of a water molecule on the scissile amide bond with concerted acid-base catalysis of the active site aspartyl residues intitiated by D125. The alignment and intrinsic position of the N-terminus of the bicyclic substrate was interpreted as being critical to facilitate efficient electron transfer with the bicyclic substrate. An N-terminal cyclic inhibitor, similar to the N-terminal portion of the bicyclic substrate, was used to address a major problem in HIV-1 PR drug design termed "cooperativity," where the sequential optimisation of an inhibitor (or substrate) to individual pockets of the substrate binding cleft, can negatively impact on adjacent and downfield subsites and thereby alter the binding mode of the "optimised" inhibitor. The technique referred to here as "templating" uses the N-terminal cycle to lock the binding mode into a known conformation, probing the S1' and S2' pockets. The structure activity relationship suggested that by viewing the S1' - S3' pockets as a single trough, bulky aromatic groups attached to an N-alkyl sulfonamide could be directed along the line of the trough without adverse interactions with the tops of the S1' and S3' pockets, providing very potent inhibitors. It was also found that specificity and potency of an inhibitor can be maintained with smaller functionalities that carry their bulk low and close to the inhibitor backbone in the S2' pocket, making the P2 functionalities more substrate-like. The second part of the thesis was concerned with establishing suitable surface plasmon resonance assays for testing potential inhibitors of Rev function. Recombinant Rev and its minimal RNA aptamer target (stem loop II of the RRE termed RBE3), were expressed, purified, and used to develop BIAcore-based assays and test potential inhibitors of their interaction. The system was applied to screening of aminoglycoside antibiotics and other small molecules in a competitive assay, and also to quantitative assay of Neomycin and moderate sized analytes: Rev and three peptidic analogues of the high-affinity binding site of Rev - the native peptide, succinylated form of the peptide and a form incorporating a novel helix-inducing cap. The peptide and protein assay was undertaken to test the proposition that helix induction of the high-affinity binding site of Rev can increase affinity for the biologically important RNA target and thereby form the basis of a new class of inhibitors. The screen of small molecule antagonists found that Neomycin was the best inhibitor of the Rev:RBE3 interaction and that efficacy of other aminoglycosides was due to the neamine-base structure presenting charge to bind to the RNA and blocking interaction with Rev. The quantitative assay was optimised to reduce non-specific interactions of Rev protein to allow reliable studies of the analytes with RBE3 by the sytematic testing of buffers and modifiers. It was found that mutliple analytes bound to the RBE3 aptamer and a comparison of the KD values found that the native and capped peptides had similar affinity for RBE3 RNA (native slightly greater at 21 ± 7nM cf capped 41 ± 10nM) that was greater than the Rev protein (101 ± 19nM), however the succinylated peptide exhibited stronger binding with a KD ≤8nM and Neomycin had the lowest affinity (KD 13 ± 3M). The similarity of the native and capped peptides may be due to the high concentration of salt in the assay buffers and was necessary for the stability of the Rev protein, but is sufficient to influence secondary structure of the peptides. Therefore, it could not be stated that the helix-inducing cap increased the affinity of the native peptide for the biologically important therapeutic target. The work conducted in this thesis firmly establishes foundations for the continued development of inhibitors against both Rev and HIV-1 PR that play key roles in the HIV-1 replication strategy. It is envisaged this work could lead to a novel synergistic therapeutic approach to treating HIV-1 infection.

Page generated in 0.0425 seconds