• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 128
  • 17
  • Tagged with
  • 145
  • 145
  • 145
  • 145
  • 61
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Imaging Chloride Homeostasis in Neurons

Arosio, Daniele January 2017 (has links)
Intracellular chloride and pH are fundamental regulators of neuronal excitability and they are often co-modulated during excitation-inhibition activity. The study of their homeostasis requires simultaneous measurements in vivo in multiple neurons. Combining random mutagenesis screening, protein engineering and two-photon-imaging this thesis work led to the discovery of new chloride-sensitive GFP mutants and to the establishment of ratiometric imaging procedures for the quantitative combined imaging of intraneuronal pH and chloride. These achievements have been demonstrated in vivo in the mouse cortex, in real-time monitoring the dynamic changes of ions concentrations during epileptic-like discharges, and in glioblastoma primary cells, measuring osmotic swelling responses to various drugs treatment.
142

Reverting the F508del-CFTR defect in Cystic Fibrosis with CRISPR-Cas technology

Carrozzo, Irene 26 April 2023 (has links)
Cystic Fibrosis (CF) is a common life-shortening autosomal recessive disease that affects over 100.000 people worldwide people worldwide. It is caused by mutations in the CF trans-membrane conductance regulator (CFTR) gene, that encodes for a membrane channel localized at the apical surface of epithelial cells where it has a crucial role in the secretion of chloride and bicarbonate. Over 2100 different CFTR mutations have been reported and among the pathogenic once the most common is F508del, located in the nucleotide-binding domain 1 (NBD1). F508del is a three-nucleotide deletion that results in the loss of a phenylalanine at position 508 in the protein and in the consequent CFTR degradation by the ubiquitin-proteasome system. Different attempts to correct F508del-CFTR gene were made using genome editing approaches, however deletions like F508del remain difficult to be repaired. Several studies reported that additional mutations (revertant mutations) in the F508del-CFTR gene can rescue both CFTR folding and activity, suggesting a potential novel strategy to correct F508del. For this reason, the first aim of this work was the identification of novel F508del-CFTR revertants that can rescue CFTR localization and function. We generated a library of mutants introducing random substitutions into the F508del-CFTR gene. Revertant mutations were isolated based on their ability to rescue the presence of CFTR at the plasma membrane (PM) in HEK293T cells and identified by Sanger sequencing. Restoration of CFTR maturation, localization, and function of the identified revertants was evaluated by western blot, flow cytometry analysis and YFP assay, reaching levels similar to the wild type CFTR. Then we used CRISPR-Cas technology to introduce selected revertant mutations, such as I539T, R553Q, G550E, R555K and R1070W, in the endogenous F508del-CFTR gene. Adenine and cytosine base editors (ABE and CBE) allow the insertion of the desired base conversion without the formation of double strand breaks. Efficient editing was evaluated through Sanger sequencing, reaching up to 60% of base conversion. CFTR rescue at the PM in edited cells was analyzed by flow cytometry showing different degrees of recovery compared to the wild type CFTR. In this work, we confirmed that revertant mutations can rescue F508del CFTR localization and function. In addition, we demonstrated that CRISPR-base editors are valid tools to introduce these mutations in the endogenous F508del-CFTR gene, leading to a permanent correction. The proposed strategy could overcome the limits that genome editing strategies faced till now in the correction of F508del, providing a new potential therapeutic approach to treat CF.
143

A network medicine approach on microarray and Next generation Sequencing data

Filosi, Michele January 2014 (has links)
The goal of this thesis is the discovery of a bioinformatics solution for network-based predictive analysis of NGS data, in which network structures can substitute gene lists as a more rich and complex signature of disease. I have focused on methods for network stability, network inference and network comparison, as additional components of the pipeline and as methods to detects outliers in high-throughput datasets. Besides a first work on GEO datasets, the main application of my pipeline has been on original data from the FDA SEQC (Sequencing Quality Control)project. Here I will report some initial findings to which I have contributed with methods and analysis: as the corresponding papers are being submitted. My goal is to provide a comprehensive tool for network reconstruction and network comparison as an R package and user-friendly web service interface available on-line at https://renette.fbk.eu The goal of this thesis is the discovery of a bioinformatics solution for network-based predictive analysis of NGS data, in which network structures can substitute gene lists as a more rich and complex signature of disease. I have focused on methods for network stability, network inference and network comparison, as additional components of the pipeline and as methods to detects outliers in high-throughput datasets. Besides a first work on GEO datasets, the main application of my pipeline has been on original data from the FDA SEQC (Sequencing Quality Control)project. Here I will report some initial findings to which I have contributed with methods and analysis: as the corresponding papers are being submitted. My goal is to provide a comprehensive tool for network reconstruction and network comparison as an R package and user-friendly web service interface available on-line at https://renette.fbk.eu.
144

Studi molecolari del processo di germinazione in Clostridium sporogenes, modello non-patogeno di Clostridium botulinum / MOLECULAR STUDIES OF GERMINATION PROCESS IN CLOSTRIDIUM SPOROGENES, THE HARMLESS TWIN OF CLOSTRIDIUM BOTULINUM

LA TORRE, ANGELA 17 March 2016 (has links)
Quando le condizioni sono sfavorevoli alla crescita, membri dei generi Bacillus e Clostridia (incluso Clostridium botulinum, l’agente eziologico del botulismo) formano endospore, forme cellulari estremamente resistenti, metabolicamente dormienti e difficili da distruggere. Tuttavia, le spore attraverso il processo di germinazione, riattivano il ciclo vegetativo non appena le condizioni tornano favorevoli. Questa capacità di “riattivazione” delle spore è causa di “food spoilage” e di intossicazioni alimentari. Considerando che le specie Clostridium botulinum e Clostridium sporogenes sono filogeneticamente correlate, in questo lavoro, il ceppo Clostridium sporogenes UC9000, isolato da latte crudo, è stato utilizzato come modello non-patogeno di Clostridium botulinum per studiare la germinazione. Studi fisiologici hanno rivelato che le spore del ceppo UC9000 germinano in presenza di L-alanina/ L-cisteina in combinazione con L-lattato, mentre un analisi in silico ha permesso di identificare omologhi dei recettori coinvolti nella risposta all’L-alanina in Bacillus. Attraverso l’analisi del genoma sono stati identificati gli enzimi SleB, CwlJ e SleL, responsabili della degradazione del cortex. CwlJ è stato localizzato nel coat della spora grazie ad uno studio di proteomica, è stato espresso in forma solubile in E. coli ed un test di attività in vitro ha evidenziato la sua capacità di indurre la germinazione di spore “decoated” / When environmental conditions are unfavorable to the growth, Bacillus and Clostridium bacteria (including Clostridium botulinum, the causative agent of foodborne botulism) form endospores, metabolically dormant cell types resistant to several adverse conditions and difficult to kill. However, under suitable conditions, spores resume the vegetative life by triggering the germination process. Thus, spores are dangerous agents of human foodborne disease and food spoilage. In this work, the strain Clostridium sporogenes UC9000, isolated from raw milk, was used like not-pathogenic model of Clostridium botulinum to better understand the mechanisms underpinning the Clostridium germination. Clostridium sporogenes is a species phylogenetically related to Clostridium botulinum and often used like its surrogate. Physiological studies revealed that UC9000 spores germinate in presence of L-alanine/L-cysteine in combination with L-lactate, while in silico analyses allowed the identification of homologues of the Bacillus germinant receptors responsive to L-alanine. The genome screening also detected genes coding for SleB, CwlJ and SleL, enzymes participating to the cortex degradation. CwlJ was found resident in the spore coat by performing a proteomic analysis, it was expressed in soluble form in E. coli and an in vitro assay of activity revealed its capability to induce germination when added exogenously to decoated spores
145

Use of plant growth promoting endophytic bacteria to alleviate the effects of individual and combined abiotic stresses on plants as an innovative approach to discover new delivery strategies for bacterial bio-stimulants

Tufail, Muhammad Aammar 19 May 2021 (has links)
Bacterial endophytes are the organisms that live inside the plant for a full or a part of their life cycle. Endophytic bacteria have captured the interest of agriculture industry due to their plant beneficial properties, such as synthesis of phytohormones, solubilization of soil nutrients, and alleviation of biotic and abiotic stresses. Several studies have reported that stress tolerant endophytic bacteria can work with a similar performance as non-stressed conditions when inoculated to the plants under stressed conditions. Combination of abiotic stresses such as salinity, drought and low nitrogen stress can have additive or agonistic effects on bacterial and plant growth, and their interactions. However, very few studies have reported the impact of combined stress on endophytic bacterial assisted plant growth promotion. Therefore, understanding the underlying mechanisms of endophytic bacterial assisted plant’s tolerance abiotic stresses may provide the means of better exploiting the beneficial abilities of endophytic bacteria in agricultural production. Thus, the aim of this thesis was to study the stress tolerance mechanisms, beneficial characteristics, and plant growth promotion characteristics of endophytic bacteria under individual and combined abiotic stresses. Transcriptome analysis of endophytic bacteria revealed that tolerance mechanisms to deal with one kind of stress is different than concurrent stresses. Salinity and drought stress largely modulated the genes involved in flagellar assembly and membrane transport, showing reduced motility under stress conditions to preserve the energy. Additionally, bacterial endophyte that can fix nitrogen was studied with maize plant growth promotion under drought and low nitrogen stress conditions. The results suggested that diazotrophic bacterial endophyte can promote plant growth under moderate individual and combined stress conditions. Plant growth promoting endophytic bacteria can be utilized as an efficient tool to increase crop production under individual and concurrent abiotic stresses.

Page generated in 0.0669 seconds