• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • Tagged with
  • 12
  • 12
  • 12
  • 12
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Genetically encoded division machinery for cell free synthetic biology

Torre, Paola January 2013 (has links)
The de novo construction of cellular life requires, in part, the assembly of components that confer the ability to replicate. Herein we describe efforts to reconstitute parts of the Escherichia coli cell division machinery inside of water-in-oil emulsion compartments and synthetic phospholipid vesicles. The system was built with DNA and purified transcription and translation machinery housed in a compartment. A particular emphasis was placed on FtsZ, a protein that oligomerizes into a ring at the midcell and splits the cell into two. FtsZ does not contain a membrane interaction domain. In vivo, FtsZ interactions with the membrane are mediated by FtsA and ZipA. Therefore, the influence of FtsA on the behavior of FtsZ also was investigated. Fluorescently tagged constructs were used to facilitate evaluation by microscopy. The data showed that FtsZ readily assembles into rings in the presence of FtsA, thereby suggesting that the Fts system can be exploited for building a genetically encoded, self-replicating, cell-like system. We also explored additional methods of dividing compartments, such as the use of aqueous two and three phase systems.
2

Cellular mimics within lipid vesicles and in thermal out-of-equilibrium chambers

Yeh Martin, Noel January 2018 (has links)
The absence of clear criteria to recognize life and evaluate attempts at building a cell from component parts has slowed progress towards the construction of cellular mimics that fully display the properties of natural living cells. In the first part of this PhD thesis, a method to objectively quantify progress is proposed. In the second part of the thesis, preliminary results are shown and discussed for the construction of out-of-equilibrium cellular mimics generated by thermal gradients that do not rely on compartments made from lipid membranes.
3

Folding, Misfolding and Therapeutics in Prion Diseases

Spagnolli, Giovanni 16 June 2021 (has links)
Prion diseases are rare neurodegenerative disorders affecting humans and other animals, caused by a proteinaceous infectious agent named prion. The pivotal event in these pathologies is the conversion of PrPC, a physiologically expressed protein of poorly characterized function, into a misfolded conformer, named PrPSc, which is capable of replicating its conformationally-encoded information by inducing the conversion of its physiological counterpart. The aggregates resulting from this misfolding process accumulate in the central nervous system of affected organisms leading to neuronal death. Prion diseases are always fatal and no therapy is currently available. The lack of an effective therapeutic strategy to tackle such conditions is the result of the poor available information regarding many aspects of PrPSc, such as its structure, pathogenicity, and its replication mechanism. To complicate things further, PrPSc can appear as a set of distinct conformers, named strains, characterized by the capacity to evolve through modification and selection of their conformations, promoting resistance to treatments. In this work, we focus on two main aspects of prion biology, the elucidation of prion structure and propagation, and the development of a novel pharmacological strategy to tackle prion diseases. In both projects, we exploited the potential of integrative schemes combining computational methods and experimental data. Such approaches allowed us to build a plausible atomistic model of PrPSc and to propose a propagation mechanism describing the series of events underlying prion propagation. Moreover, the application of advanced computational schemes enabled us to identify a PrP folding intermediate displaying unique druggability properties. By exploiting the structural information of this protein conformer we identified a compound capable of acting as a pharmacological degrader for PrP by interfering with its folding pathway. Overall, this work highlights how the integration of computational and experimental methods is an extremely valuable scheme to answer complex biological questions, such as unraveling the mechanisms of protein misfolding and providing the tools to design pharmacological strategies for untreatable diseases.
4

Cell-free expression systems for the construction of artificial cells

Berloffa, Giuliano January 2018 (has links)
Cell-free expression systems are widely used to synthesize proteins for subsequent further characterization, to manufacture potentially useful commercial end products, and to construct cellular mimics in the laboratory. The first part of the thesis explores the feasibility of preparing two of the commercially available and widely used E. coli-based cell-free expression systems: the PURE System and the S30 Bacterial Extract. The second part focuses on the characterization of in vitro transcription and translation. The third part of the thesis features an example of an application of S30 Bacterial Extract cell-free expression systems i.e. the building of cell-like structures that can work together with engineered bacteria to achieve a predetermined task. Finally, the construction of a microfluidic dialysis device compatible with cell-free synthetic biology projects is presented.
5

Mass Spectrometry Imaging: Looking Fruits at Molecular Level

Dong, Yonghui January 2014 (has links)
Mass spectrometry imaging (MSI) is a MS-based technique. It provides a way of ascertaining both spatial distribution and relative abundance of a large variety of analytes from various biological sample surfaces. MSI is able to generate distribution maps of multiple analytes simultaneously without any labeling and does not require a prior knowledge of the target analytes, thus it has become an attractive molecular histology tool. MSI has been widely used in medicine and pharmaceutical fields, while its application in plants is recent although information regarding the spatial organization of metabolic processes in plants is of great value for understanding biological questions such as plant development, plant environment interactions, gene function and regulatory processes. The application of MSI to these studies, however, is not straightforward due to the inherent complexity of the technique. In this thesis, the issues of plant sample preparation, surface properties heterogeneity, fast MSI analysis for spatially resolved population studies and data analysis are addressed. More specifically, two MSI approaches, namely matrix assisted laser desorption ionization (MALDI) imaging and desorption electrospray ionization (DESI) imaging, have been evaluated and compared by mapping the localization of a range of secondary and primary metabolites in apple and grapes, respectively. The work based on MALDI has been focused on the optimization of sample preparation for apple tissues to preserve the true quantitative localization of metabolites and on the development of specific data analysis tool to enhance the chemical identification in untargeted MSI (chapter 3). MALDI imaging allows high-spatial localization analysis of metabolites, but it is not suitable for applications where rapid and high throughput analysis is required when the absolute quantitative information is not necessary as in the case of screening a large number of lines in genomic or plant breeding programs. DESI imaging, in contrast, is suitable for high throughput applications with the potential of obtaining statistically robust results. However, DESI is still in its infancy and there are several fundamental aspects which have to be investigated before using it as a reliable technique in extensive imaging applications. With this in mind, we investigated how DESI imaging can be used to map the distribution of the major organic acids in different grapevine tissue parts, aiming at statistically comparing their distribution differences among various grapevine tissues and gaining insights into their metabolic pathways in grapevine. Our study demonstrated that this class of molecules can be successfully detected in grapevine stem sections, but the surface property differences within the structurally heterogeneous grapevine tissues can strongly affect their semi-quantitative detection in DESI, thereby masking their true distribution. Then we decided to investigate this phenomenon in details, in a series of dedicated imaging studies, and the results have been presented in chapter 4. At the same time, during DESI experiments we have observed the production of the dianions of small dicarboxylates acids. We further studied the mechanism of formation of such species in the ion source proposing the use of doubly charged anions as a possible proxy to visualize the distributions of organic acid salts directly in plant tissues (chapter 5). The structural organization of the PhD thesis is as below: Chapter one and Chapter two describe the general MSI principle, compare the most widely used MSI ion sources, and discuss the current status in MSI data pre-processing and statistical methods. Due to the importance of sample preparation in MSI, sample handling for plant samples is independently reviewed in chapter two, with all the essential steps being fully discussed. The first two chapters describe the comprehensive picture regarding to MSI in plants. Chapter three presents high spatial and high mass resolution MALDI imaging of flavonols and dihydrochalcones in apple. Besides its importance in plant research, our results demonstrate that how data analysis as such Intensity Correlation Analysis could benefit untargeted MSI analysis. Chapter four discusses how sample surface property differences in a structurally/biologically heterogeneous sample affect the quantitative mapping of analytes in the DESI imaging of organic acids in grapevine tissue sections. Chapter five discusses the mechanism of formation of dicarboxylate dianions in DESI and ESI Chapter six summarizes the work in the thesis and discusses the future perspectives.
6

Cellular mimics that sense and respond to external stimuli

Martini, Laura January 2015 (has links)
To date little effort has been expended on the construction of cellular mimics from a minimum number of component parts. Such systems are desirable, because the cellular mimics could serve as useful tools to more deeply delve into the systems level reactions that sustain life and as a platform from which new types of technologies could be generated. Herein the building of cellular mimics that can sense and respond to external stimuli is presented. The majority of our efforts in building cellular mimics are directed towards the sensory element. Initially, previously characterized natural and artificial RNA sensors, i.e. a riboswitches, are exploited. Subsequently, the cellular mimics are implemented as chemical translators for natural bacterial cells. To expand the capabilities of the engineered cellular mimics, we sought to develop a methodology for the selection of new RNA-based sensors capable of detecting new analytes. The tested methodologies were based on mRNA display and strand displacement reactions. The mRNA display selection did not lead to the identification of a sensor responsive to malachite green after eight cycles of selection. Conversely, via ligand induced triggering of a strand displacement reaction, new RNA sensors for thiamine pyrophosphate were selected from a small library. The sensors displayed translational control ability as is typical of certain classes of riboswitches. The strand displacement-based selection method represents a first step towards the in vitro evolution of sensing elements than can be exploited for new cellular mimics with programmable sensing capability.
7

Cholesterol-Dependent Cytolysins and Perforin: Similar Pore-Forming Mechanisms in Pathogenic Attack and Human Immune Defense

Marchioretto, Marta January 2013 (has links)
MACPF/CDCs proteins are a huge family of pore-forming proteins present from the bacteria to the human genera. Cholesterol-dependent cytolysins (CDCs) are a family of toxins that participate in bacterial infection pathway at the membrane level. Great interest in this family is due to their similarity, in structure and in pore-forming mechanism, with some human immune system proteins (MACPF). We focused our attention particularly on two bacterial CDCs, Perfringolysin O and Listeriolysin O, and on the human protein Perforin, which is involved in the apoptotic pathway facilitating Granzyme release. In the literature, two possible configurations of CDCs and Perforin pores are proposed: ring and arc structures that could have different implications on the biological mechanism of action of these pore-forming proteins. By electrophysiological measurements and atomic force microscopy technique on different artificial membrane, we are able to enrich the ring and the arc fraction and demonstrate that both kinds of pore are active, i.e. conduct ions. Thus, my PhD work underlines two physiological structures which are involved in several ways, more than merely by disrupting membrane integrity, in pathogenic attack (bacterial CDCs proteins) as well as in immune response (human Perforin proteins).
8

A comparative analysis of the metabolomes of different berry tissues between Vitis vinifera and wild American Vitis species, supported by a computer-assisted identification strategy

Narduzzi, Luca January 2015 (has links)
Grape (Vitis vinifera L.) is among the most cultivated plants in the world. Its origin traces back to the Neolithic era, when the first human communities started to domesticate wild Vitis sylvestris L. grapes to produce wines. Domestication modified Vitis vinifera to assume characteristics imparted from the humans, selecting desired traits (e.g. specific aromas), and excluding the undesired ones. This process made this species very different from all the other wild grape species existing around the world, including its progenitor, Vitis sylvestris. Metabolomics is a field of the sciences that comparatively studies the whole metabolite set of two (or more) groups of samples, to point out the chemical diversity and infer on the variability in the metabolic pathways between the groups. Crude metabolomics observation can be often used for hypotheses generation, which need to be confirmed by further experiments. In my case, starting from the grape metabolome project (Mattivi et al. unpublished data), I had the opportunity to put hands on a huge dataset built on the berries of over 100 Vitis vinifera grape varieties, tens of grape interspecific hybrids and few wild grape species analyzed per four years; all included in a single experiment. Starting from this data handling, I designed specific experiments to confirm the hypotheses generated from the observation of the data, to improve compound identification, to give statistical meaning to the differences, to localize the metabolites in the berries and extrapolate further information on the variability existing among the grape genus. The hypotheses formulated were two: 1) several glyco-conjugated volatiles can be detected, identified and quantified in untargeted reverses-phase liquid chromatography-mass spectrometry; 2) The chemical difference between Vitis vinifera and wild grape berries is wider than reported in literature. Furthermore, handling a huge dataset of chemical standards injected under the same conditions of the sample set, I also formulated a third hypothesis: 3) metabolites with similar chemical structures are more likely to generate similar signals in LC-MS, therefore the combined use of the signals can predict the more likely chemical structure of unknown markers. In the first study (chapter 5), the signals putatively corresponding to glycoconjugated volatiles have been first enclosed in a specific portion of the temporal and spectrometric space of the LC-HRMS chromatograms, then they have been subjected to MS/MS analysis and lastly their putative identity have been confirmed through peak intensity correlation between the signals measured in LC-HRMS and GC-MS. In the second study (chapter 6), a multivariate regression model has been built between LC-HRMS signals and the substructures composing the molecular structure of the compounds and its accuracy and efficacy in substructure prediction have been demonstrated. In the third study (chapter 7), I comparatively studied some wild grapes versus some Vitis vinifera varieties separating the basic components of the grape berry (skin, flesh and seeds), with the aim to identify all the detected metabolites that differentiate the two groups, which determine a difference in quality between the wild versus domesticated grapes, especially regarding wine production.
9

Prebiotic Synthesis of Redox-Active Iron-Sulfur Clusters

Bonfio, Claudia January 2017 (has links)
Iron-sulfur clusters are indispensable to extant metabolism and are thought to have had an ancient role in mediating the chemical reactions that led to life. However, there has been no clear proposal for how these inorganic clusters came to occupy such an important position in biology. In this thesis I describe my efforts in delineating a plausible path from short, prebiotically plausible peptides to longer sequences with similar features to modern day iron-sulfur proteins. Small organic thiolates and short cysteine-containing peptides can give rise to [2Fe-2S] and [4Fe-4S] clusters in aqueous solution when irradiated with UV light in the presence of iron ions. Additionally, duplications of tripeptides coordinated iron-sulfur clusters give sequences which are better able to stabilize iron-sulfur clusters, resembling motifs with cysteinyl ligand spacing highly similar to contemporary ferredoxins. Moreover, the studied iron-sulfur clusters are redox active and are able to mimic extant metabolic pathways, such as the first step of the electron transport chain, within protocells favouring the formation of a proton gradient which could be exploited for central biosynthetic processes.
10

Prebiotic photoreduction and polymerization of cysteinyl peptides.

Xxx, Anju 11 October 2023 (has links)
Cysteinyl peptides likely played an important role in the prebiotic synthesis of cofactors, such as iron-sulfur clusters. However, cysteinyl peptides must be reduced in order to coordinate iron-sulfur clusters. Mixtures of ferric ions and cysteinyl peptides leads to the reduction of ferric to ferrous ions and the concomitant formation of disulfide bridged, oxidized cysteinyl peptides that are incapable of coordinating an iron-sulfur cluster. Here, we develop a photochemically driven solution to this problem. Lipoic acid (( R )-5-(1,2-dithiolane-3-yl)pentanoic acid), a molecule structurally similar to fatty acids, can be photochemically reduced and can subsequently reduce the oxidized cysteinyl peptides needed for the coordination of an iron-sulfur cluster. Other dithilane ring containing molecules possess similar activity to lipoic acid. The synthesis of small peptides containing cysteines, such as glutathione and GCG (Gly-Cys-Gly) is easy by both solid phase and solution phase methodologies. However, as the length of the peptide increases, the yield begins to decrease, especially for peptides containing cysteines due to oxidation. One solution could be to exploit a previously uncovered mechanism for the joining of peptides into longer peptides. Such mechanisms, referred to as CPL for catalytic peptide ligation, rely on either thiols or metals as catalysts and peptide nitriles as substrates. Thus far, CPL has only been exploited with non-cysteinyl peptides. In this thesis, we extend CPL to cysteine containing peptides by taking advantage of the templating effects of Zn2+. Longer peptides with properly spaced cysteines are frequently better able to stabilize iron-sulfur clusters in aqueous solution than shorter peptides. Coordination can either be complete or an open coordination position, filled by solvent, can be used to bind substrate. Two well-known examples of such an arrangement are the radical SAM (S-adenosylmethionine) enzyme and aconitase being an enzyme of the citric acid cycle. We designed and synthesized peptide sequences that could coordinate a [4Fe-4S]2+ cluster with three cysteinyl ligands, leaving an open coordination position. The stability of the [4Fe-4S] cluster was affected by the intermediates of the citric acid cycle. The iron-sulfur can be reconstituted with the long peptidyl sequences from proteins such as SLC25A39 which contains four cysteine ligands to form [2Fe-2S] cluster, which is necessary for glutathione transport from cytosol to mitochondria.

Page generated in 0.0849 seconds