• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

RNA-based therapeutic approaches for FTDP-17

Kavitha, Siva January 2015 (has links)
Neurodegenerative diseases are linked to altered splicing mechanisms (Mills et al., 2012). Fronto temporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) is one such disease that stems from the differential splicing caused due to mutations in Microtubule associated protein tau (MAPT) gene (Esther et al., 2002). This PhD thesis focuses on developing RNA-based therapeutic approaches to address FTDP-17. CHAPTER 1 introduces a broad range of topics such as splicing mechanism, neurodegenerative diseases associated with splice defects, therapeutic tools to modulate such splice defects in the context of neurogenetic diseases and possible applications of available tools for FTDP-17. CHAPTER 2 explores an exon skipping strategy to modulate splice defects in the context of FTD-17 using small nuclear RNAs (snRNAs). CHAPTER 3 is based on a short interfering RNA (siRNA) approach to modulate post-transcriptional gene silencing of specific isoform associated to FTDP-17. CHAPTER 4 employs long non coding RNA (lncRNA) to mediate post transcriptional repression of tau protein associated to FTDP-17 and deciphers its auxiliary role in splicing of exon 10 CHAPTER 5 elaborates on the future perspectives of all the above mentioned approaches to find a cure for FTDP-17.
2

Inhibition of mitochondrial translation as a novel strategy to eradicate glioblastoma stem cells

Sighel, Denise January 2018 (has links)
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. The search for new effective chemotherapeutic agents to treat GBM has proven challenging throughout the last few decades. As a result, very limited pharmacological treatment is currently available. GBM aggressiveness is associated with its glioblastoma stem cells (GSCs) component, which is responsible for resistance to therapy. Therefore, new specific pharmacological approaches directed to eradicate GSCs are endowed with a great therapeutic potential. GSCs have been shown to rely on mitochondrial respiration for their high energy demand. In order to have a functional mitochondrial respiration process, the five complexes forming the oxidative phosphorylation (OXPHOS) chain have to be built by the coordinate assembly of proteins translated by either the cytosolic or the mitochondrial ribosomes. Given their endosymbiotic origin and despite the evolutionary changes occurred the mitochondrial ribosomes (mitoribosomes) still share structural and functional similarities with the bacterial ones, particularly considering the functional ribosomal core. In the light of these similarities, we hypothesized that antibiotics targeting bacterial ribosomes could be exploited to inhibit mitoribosomes, affecting mitochondrial translation and OXPHOS assembly, and hence leading to detrimental effect on GSCs viability. We performed a high-content imaging driven screening of several bacterial ribosome targeting antibiotics and identified Drug A as the most promising compound due to its cytotoxic and mitotoxic effects on GSCs. We demonstrated that Drug A effectively prevents GSCs expansion, resulting to be over an order of magnitude more effective in GSCs growth inhibition than temozolomide, the only drug used in first line GBM therapy. We then investigated the mechanism of action of Drug A, proving that it inhibits mitochondrial translation and, as a consequence, it decreases the functionality of the OXPHOS complexes reducing mitochondrial respiration capacity. Moreover, we obtained the structure of this compound bound to the human mitoribosome using cryo-electron microscopy, which provides the basis for further development of more potent analogs. Finally we proved the efficacy of Drug A in vivo using a xenograft mouse model of GBM. Our results suggest that mitochondrial translation represents a therapeutic target for GBM and show that Drug A, acting via inhibition of mitochondrial translation, is extremely effective against GSCs. Given the urgent medical need for novel therapeutic approaches in GBM treatment, Drug A represents a promising therapeutic solution that is worth further preclinical and clinical investigations.
3

Exploring Protein Folding Intermediates Across Physiology and Therapy

Bonaldo, Valerio 08 July 2024 (has links)
In recent years, advancements in computational methodologies have shed light on the complex process that makes proteins fold into their three-dimensional shapes. These new tools have helped us understand the steps proteins take to achieve these structures, revealing the presence of metastable intermediates along the folding pathways. This newfound understanding has led to the development of a novel drug discovery strategy known as Pharmacological Protein Inactivation by Folding Intermediate Targeting (PPI-FIT). This approach specifically targets folding intermediates to modulate protein expression levels, thus opening new opportunities for pharmacological intervention. This approach could be particularly relevant for diseases linked to targets that were previously considered "undruggable." A promising outcome of the PPI-FIT strategy is the identification of SM875, a compound that has been shown to lower prion protein (PrP) levels, positioning it as a potential therapeutic candidate for prion diseases. This study describes the initial phase of optimization of the SM875 scaffold. It encompasses the chemical diversification of SM875, followed by systematic evaluations of its biological activity and toxicity, with the aim of establishing structure-activity relationships (SAR). This knowledge is instrumental in guiding the synthesis of analogs with enhanced properties, advancing them through the development pipeline toward clinical application. Furthermore, this work investigates the potential regulatory function of folding intermediates in physiological processes, hypothesizing that they may serve as substrates for post translational modifications (PTMs). This hypothesis proposes an expansion of the current paradigm, suggesting that folding intermediates could constitute an additional layer of regulation within the complex network of proteostasis.

Page generated in 0.0683 seconds