181 |
An examination of linking and blocking procedures for use in deflection cantilever array-based protein detectionvan den Hurk, Remko Unknown Date
No description available.
|
182 |
Characterization of Bio-sensing Waveguides in CYTOP Operating with Long Range Surface Plasmon Polaritons (LRSPP’s)Khan, Asad 14 May 2013 (has links)
This thesis report works on optically characterizing waveguide based biosensors consisting of thin, narrow Au stripes embedded in CYTOP. The devices were examined using an ever evolving and improving interrogation setup, variations of which are described in detail in this document. A number of changes were made to the setup configuration in order to reduce noise levels and increase efficiency and accuracy of acquired measurements. Waveguides of varying configurations (straight waveguides and Mach-Zehnder Interferometers with etched and cladded channels) are described and optically characterized. The characterization results of these devices are presented in this thesis. Bulk index measurements are carried out in order to determine a suitable bio-sensing solution with a refractive index matched to that of CYTOP. Step index measurements clearly distinguishing the introduction of sensing solutions of refractive indices varying from one another, are made available. Preliminary bio-sensing experiments involving detection of change in refractive index of sensing fluid as well as adlayer thickness with the introduction of analytes binding to the waveguide surface that has been functionalized with antibodies, using both straight and cladded waveguides with single mode outputs are studied.
|
183 |
Electrochemical Studies of DNA Films on Gold SurfacesShamsi, Mohtashim Hassan 07 January 2013 (has links)
DNA-metal ion interactions are critical for stabilizing conformations of double stranded (ds) DNA and through specific binding sites will influence the interaction of DNA with other molecules. It has been shown that different metal ions bind to different sites within nucleic acids. Work in this thesis exploits the interactions of Zn2+ with nucleic acids that are linked to surfaces. Zn2+ can interact with the phosphodiester backbone and engage in interactions with the purine nucleobases. Electrochemical studies of ds-DNA films have demonstrated that in the presence of Zn2+ films containing a single nucleotide mismatch give rise to a specific electrochemical signature. Electrochemical impedance spectroscopy (EIS) allows the discrimination of mismatched DNA films from those that are fully matched by monitoring differences in the resistance of charge transfer. Scanning electrochemical microscopy (SECM) allows multiplexing of the data acquisition and monitoring of the current response I, which is attenuated as a function of mismatch. In this thesis, various potential factors were explored in detail that may impact the discrimination of nucleotide mismatches in ds-DNA films by EIS and SECM. These factors include the position of the mismatch, its type, the number of mismatches, the length of the DNA duplex, and the length of target sequences. In particular, when the two strands are of unequal length, the resulting nucleotide overhang may mask the mismatch signature. Such overhangs are expected in real biosensor applications, in which the DNA is isolated from cellular targets. Results presented here clearly demonstrate that mismatches are readily distinguished from fully matched strands even in overhang systems, suggesting that this approach has promise for realistic sensor applications.
|
184 |
A Label-Free Biosensor for Heat Shock Protein 70 Using Localized Surface Plasmon ResonanceDenomme, Ryan 18 June 2012 (has links)
Heat shock protein 70 (HSP70) is an important health related biomarker, being implicated as an early stage cancer marker and as an indicator of cardiac health. It also has important implications in wildlife environmental monitoring, as its levels can be affected by food deprivation, elevated temperatures, and pollution. Therefore, the use of HSP70 as a biomarker is highly desirable, yet the current methods of quantifying HSP70 are time consuming, expensive, and require dedicated labs. In order to facilitate widespread use of the HSP70 biomarker, a quantification tool that can be used at the point-of-care is needed. This implies the development of a simple and inexpensive HSP70 biosensing technique that is highly sensitive and selective. Therefore, in this work a label-free HSP70 biosensor has been designed based on the optical properties of gold nanoparticles (NPs). Gold NPs exhibit a large absorbance peak in the visible spectrum due to localized surface plasmon resonance (LSPR). The peak position is dependent on the local refractive index, which can be employed as a biosensor by selectively capturing the target analyte to the NP surface. To design an LSPR HSP70 sensor, optical and fluidic simulations were developed to determine optimal NP geometries and microchannel dimensions. The results showed optimal response when using 100nmx5nm gold nanotriangles inside of a 100μmx100μm microchannel. Simulations of the sensor performance showed HSP70 detection from 0.92-4000ng/ml with a resolution of 1.1ng/ml, all of which satisfied the design requirements. An LSPR sensor was experimentally tested at the benchtop scale to prove the concept. Gold NPs were fabricated by electron beam lithography and enclosed in a polymer flow cell. For initial testing of the LSPR sensor, the NPs were functionalized with biotin for selective capture of streptavidin. Streptavidin was detected in real time over the range 55-500,000ng/ml. The use of bovine serum albumin (BSA) was shown to be necessary to block non-specific binding sites to ensure a streptavidin-specific response. The LSPR sensor was then demonstrated to detect salmon HSP70 at 4600ng/ml using its synthetic antibody. Overall, these results demonstrate that LSPR can be used to realize an HSP70 biosensor suitable for point-of-care applications.
|
185 |
A study of hybridisation of DNA immobilised on gold: strategies for DNA biosensingMearns, Freya Justine, Chemistry, Faculty of Science, UNSW January 2006 (has links)
This thesis outlines a study of the physical changes that hybridisation imposes on single-stranded DNA (ssDNA) immobilised by one end to a substrate, and of how such physical changes can be exploited to detect specific sequences of DNA in a target solution. The system studied was composed of a mixed monolayer of 20mer ssDNA with C6 alkanethiolate modifications on their 3??? ends and short-chain hydroxyterminated alkanethiolates, on a gold substrate. It was prepared using the self-assembly properties of alkanethiols on gold. Atomic force microscopy images showed that the end-immobilised ssDNA is flexible enough to lie over the diluent hydroxy-terminated self-assembled monolayer (SAM). Hybridisation was shown to cause the DNA to become more rigid and stand up off the substrate due to an increase in persistence length. Such physical changes of the DNA upon hybridisation were significant enough to be exploited in the development of a DNA recognition interface. The recognition interface was designed with the view of keeping it both simple to make and simple to use, and was coupled with electrochemical transduction. A label-free recognition interface was developed that relied on the oxidation of the sulfur head group of the alkanethiolate SAM to detect hybridisation (firstly air oxidation and then electrochemical oxidation). It produced a positive signal upon hybridisation with complementary target DNA. Improvements in the reliability and robustness of the recognition interface were made using a labelled approach. The labelled version employed electroactive molecules as labels on the 5??? ends of the probe DNA strands. Two labels were investigated ??? anthraquinone and ferrocene. The flexibility of the ssDNA ensured that the redox labels were able to directly access the underlying gold electrode. Hybridisation was expected to remove the labels from the electrode due to an increase in the DNA???s persistence length, and thus perturb the electrochemical signal. The use of ferrocene as a label provided a ???proof-of-concept??? for the system. The labelled recognition interface provides a foundation for the future development of a simple, reliable, and selective DNA hybridisation biosensor.
|
186 |
New optical biosensors for uric acid and glucoseSchrenkhammer, Petra January 2008 (has links)
Regensburg, Univ., Diss., 2008
|
187 |
Enzymbasierter Gassensor zur selektiven, direkten und kontinuierlichen Detektion von Formaldehyd /Achmann, Sabine. January 2009 (has links)
Zugl.: Bayreuth, Universiẗat, Diss., 2009.
|
188 |
Biosensoren auf der Basis von Halbleiter-Feldeffektstrukturen mit angekoppelten InsektenantennenSchroth, Peter. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2000--Aachen.
|
189 |
Entwicklung und Anwendung fluoreszierender Biosensoren für cAMP und cGMPNikolaev, Viacheslav. Unknown Date (has links) (PDF)
University, Diss., 2005--Würzburg. / Parallelt.: Development and application of fluorescent cAMP und cGMP biosensors.
|
190 |
Detection of low molecular weight molecules using optical biosensorsAkkoyun, Akin. Unknown Date (has links) (PDF)
Techn. University, Diss., 2002--Braunschweig.
|
Page generated in 0.0316 seconds