• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 441
  • 106
  • 54
  • 48
  • 10
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 4
  • 3
  • Tagged with
  • 880
  • 92
  • 85
  • 72
  • 70
  • 67
  • 64
  • 56
  • 51
  • 51
  • 50
  • 44
  • 42
  • 42
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Functional Metasurfaces towards Applications: Optical Modulation, Integrated Photonics, and Biomolecular Sensing

Li, Zhaoyi January 2018 (has links)
Metasurfaces, a new class of artificial media attracting great research interest, are composed of a two-dimensional ensemble of designer optical antennas arranged with subwavelength separation that introduce spatially-varying optical properties (e.g., amplitude, phase and polarization). By engineering the subwavelength optical antennas and integrating with functional materials, metasurfaces can manipulate light at one’s will and have led to the demonstration of many exotic electromagnetic phenomena. Metasurfaces have the potential to replace bulky optical components and devices as they are ultra-thin (subwavelength thickness), light weight, and able to provide new functionalities and overcome the limitations of their conventional counterparts. There are a number of promising areas in fundamental research and practical applications where metasurfaces could have a significant impact. In this dissertation, I studied the fundamental physics of the strong interaction between light and metasurfaces and explored passive and active nanophotonic devices based on metasurfaces. I demonstrated metasurface-based devices showing record-breaking or completely novel functionalities; these devices include optical modulators for dynamic control of light propagating in free space over an unprecedented broad wavelength range, photonic integrated devices with record-small footprints, and metasurface sensors orders of magnitude more sensitive than the state-of-art sensing techniques. Strongly correlated perovskites possess widely tunable electronic structure that can host a variety of phases. Nickelates, in particular, undergo electric-field-tunable phase transitions with dramatic changes in the optical properties. In Chapter 2, I will describe my discovery of a new optical phase-transition material SmNiO3 and experimental demonstration of strong optical modulation utilizing the large and non-volatile optical refractive index change associated with electron-doping induced phase transition of SmNiO3. Large electrical modulation of light over a broad wavelength range, from the visible to the mid-infrared,  = 0.4 m – 17 m, is demonstrated using thin-film SmNiO3. By integrating SmNiO3 and plasmonic metasurface structures, modulation of a narrow band of light that resonantly interacts with the metasurfaces is realized. Furthermore, solid-state electro-optic modulators are demonstrated by integrating SmNiO3 and solid polymer electrolytes. Correlated perovskites with tunable and non-volatile electronic phases create a new platform for active photonic devices, such as optoelectronic modulators, electrically programmable optical memories, smart windows, and variable emissivity coatings. Research on metasurfaces has so far focused on controlling wavefronts of light propagating in free space, and the implication of metasurfaces on integrated photonics has not been explored. I conducted initial work on using metasurfaces to control light propagation on a chip. In chapter 3, I will show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nano-antennas provide a platform to control guided waves via strong optical scattering at subwavelength intervals. Such gradient metasurfaces enable the creation of small-footprint, broadband, and low-loss photonic integrated devices. I will describe experimental demonstration of waveguide mode converters, polarization rotators, and asymmetric optical power transmission in waveguides patterned with plasmonic gradient metasurfaces. I will also describe experimental demonstration of all-dielectric on-chip polarization rotators that are based on phased arrays of Mie resonators and have negligible insertion losses. Metasurfaces emerge as a new promising photonic platform for biosensing because they offer strong optical confinement and tunable optical resonances. In chapter 4, I will show that metasurface-based biosensors consisting of gold nano-antenna arrays loaded with graphene and working in the mid-infrared spectral range can achieve simultaneous high-sensitivity and high-specificity detection of biomolecules. The biosensors support a hybrid plasmon-phonon resonant mode that concentrates incident light into deeply subwavelength optical spots with local light intensity enhancement by a factor of 104. Strong light-molecule interactions in these optical spots allow for determing protein molecule concentrations via spectral shifts of the plasmon-phonon resonance. A combination of passive and active tuning of the metasurface sensors allows for spectrally overlapping the plasmon-phonon resonance and the vibrational modes of protein molecules, so that I can identify protein molecules via their characteristic mid-infrared “fingerprints”. The high sensitivity and specificity of the metasurface sensors enable the detection of the secondary structure of protein immunoglobulin (IgG) molecules with a sensitivity four orders of magnitude higher than that of conventional attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR).
132

Acoustic biosensors for point-of-care diagnosis

Charmet, Jérô̂me January 2015 (has links)
No description available.
133

Surface stress at the solid-liquid interface : alkanethiol monolayers on gold

Monga, Tanya. January 2006 (has links)
No description available.
134

Fabrication and characterisation of eletrochemical biosensors for the determination of cholesterol

Govender, Gwensweri, University of Western Sydney, College of Science. Technology and Environment January 2001 (has links)
During the course of this study, an extensive investigation was conducted into the measurement of free and total cholesterol by fabrication of cholesterol biosensors. Specific areas investigated in-depth included the immobilisation of enzymes into conducting polypyrrole (PPy) film, bovine serum albumin-glutaraldehyde (BSA-GLA) gel and a hybrid bi-layer of PPy and BSA-GLA. Key parameters for the reliable measurement of cholesterol were optimised. The optimum parameters / Doctor of Philosophy (PhD)
135

Fabtrication of Surface Plasmon Biosensors in CYTOP

Asiri, Hamoudi 19 September 2012 (has links)
This thesis describes work carried out on the research, development and implementation of new processes for the fabrication of surface plasmon waveguide biosensors. Fabrication of surface plasmon resonance (SPR) based waveguides embedded in a thick CYTOP cladding with the incorporation of fluidic channels was achieved with improved quality and operability compared to previous attempts. The fabrication flow was modified in key areas including lithography for feature definition, gold evaporation and the upper cladding deposition procedure. The combined result yielded devices with sharper resolution of waveguides, gold surfaces with minimal aberrations, reduced surface roughness and minimization of waveguide deformation due to reduction of solvent diffusion into the lower cladding. The fabricated waveguides consisted of a thin, 35 nm, patterned gold film, embedded in a thick, 18 µm, CYTOP fluoroploymer cladding. The gold devices were exposed by O2 plasma etching through the upper cladding to form fluidic channels for the facilitation of flow of an index matched sensing medium. Optical and physical characterization of devices revealed structures of significantly improved quality over previous attempts, rendering the platform competitive for biosensing applications.
136

Electrochemically controlled patterning for biosensor arrays.

Dondapati, Srujan Kumar 14 December 2006 (has links)
Existe una demanda creciente de dispositivos de análisis multianalito, con aplicaciones potenciales en los campos de la biomedicina y biotecnología, así como en el ámbito industrial y ambiental. Para el desarrollo de estos dispositivos resulta esencial un buen control espacial durante la etapa de inmovilización de las biomoléculas de interés; cada una de ellas debe ser depositada de forma precisa sobre la superficie del sensor (por ejemplo, un transductor amperométrico), evitando solapamientos que puedan comprometer la especificidad del sistema. El objetivo de esta tesis es desarrollar diferentes métodos de patterning para la inmovilización selectiva de biomoléculas. El primer método consiste en la electrodeposición selectiva de nanopartículas de oro biofuncionalizadas para el desarrollo de biochips. Se trata de un método de patterning controlado electroquímicamente, en el que las nanopartículas de oro se modifican en primer lugar recubriéndolas con diversos enzimas y a continuación se electrodepositan selectivamente sobre la superficie de un electrodo. Como parte de esta metodología, se prepararon nanopartículas de oro biofuncionalizadas utilizando tres estrategias diferentes: a través del enlace dativo oro-tiol, por adsorción directa o mediante interacción electrostática siguiendo la técnica layer-by-layer (capa por capa). Para la funcionalización de las nanopartículas de oro se emplearon distintas biomoléculas, como los enzimas peroxidasa de rábano (HRP), glucosa oxidasa (GOX) y albúmina de suero bovino (BSA), y finalmente oligonucleótidos modificados con moléculas fluorescentes y grupos tiol. Las nanopartículas biofuncionalizadas fueron caracterizadas mediante técnicas de espectroscopía UV-visible, microscopía electrónica de transmisión (TEM) y medida del potencial zeta. Mediante espectroscopía UV-visible se observó un pico de resonancia de plasmón característico de las nanopartículas modificadas, relacionado con la estabilidad de la preparación. La medida del potencial zeta permitió la caracterización de las nanopartículas de oro modificadas capa por capa con polímero redox y enzimas. También se estudiaron los cambios en el potencial zeta de nanopartículas modificadas con BSA a distintos valores de pH. Tras la preparación de las partículas biofuncionalizadas, se llevaron a cabo estudios fundamentales de electrodeposición de nanopartículas de oro modificadas con BSA y un polímero redox, con el fin de analizar el efecto de varios parámetros: potencial aplicado, tiempo de deposición, distancia entre los electrodos, superficie del electrodo auxiliar y pH del medio. Para estudiar el comportamiento electrocatalítico de las nanopartículas modificadas una vez electrodepositadas, se llevaron a cabo experimentos utilizando coloides de oro modificados con HRP y GOX. A continuación se empleó esta metodología para el desarrollo de biochips, utilizando dos configuraciones diferentes. En la primera, se electrodepositaron nanopartículas de oro funcionalizadas con GOX y HRP y modificadas con un polímero redox sobre la superficie de un chip de electrodos interdigitados (IDE), consiguiendo eliminar por completo las repuestas no específicas. En la segunda configuración, las partículas se modificaron con una capa adicional de polímero redox, comprobando de nuevo la ausencia total de respuestas no específicas después de la electrodeposición. Esta método de patterning es genérico y puede utilizarse para la producción de diversos biochips. El segundo método de patterning también está basado en el control electroquímico, y consiste en la modificación de los electrodos con monocapas autoensambladas electroactivas cuya funcionalidad es modulable en función del potencial aplicado. En esta metodología, la monocapa electroactiva contiene grupos acetal que pueden ser desprotegidos selectivamente mediante la aplicación de un potencial en zonas específicas de la superficie del electrodo. De esta manera quedan expuestos en la superficie grupos aldehído activos, que pueden ser fácilmente conjugados con aminas primarias presentes en las biomoléculas de interés. Los enzimas GOX y HRP se usaron como proteínas modelo para comprobar la versatilidad de esta técnica. Su aplicabilidad para la fabricación de biochips se demostró con medidas amperométricas y medidas en tiempo real mediante resonancia de plasmón de superficie combinado con electroquímica (eSPR). La tercera metodología es también un sistema de patterning controlado electroquímicamente, pero en este caso se utiliza la inmovilización del 4,4-bipiridil como base para la creación de biochips. Se sintetizaron moléculas de 4,4-bipiridil funcionalizadas con grupos carboxílicos, que fueron caracterizadas electroquímicamente y a continuación conjugadas con las biomoléculas de interés para la creación de biochips. La selectividad de estos sistemas se demostró colorimétricamente, obteniéndose niveles mínimos de respuesta inespecífica. Por último, el cuarto de los métodos de patterning desarrollados está basado en la técnica de fotolitografía. Los enzimas glucosa oxidasa y sarcosina oxidasa se depositaron selectivamente junto con un polímero redox sobre la superficie de electrodos interdigitados utilizando un proceso de lift off, consiguiendo eliminar por completo las señales cruzadas o cross-talk. Como parte de esta metodología se optimizaron varios procedimientos de inmovilización de las biomoléculas, con el fin de seleccionar la estrategia más adecuada. También se llevaron a cabo ensayos con diferentes reactivos para eliminar la adsorción inespecífica. Finalmente, el sistema optimizado fue aplicado sobre IDEs fabricados mediante fotolitografía. Los sensores de glucosa y sarcosina respondieron de forma selectiva a sus respectivos sustratos, con ausencia total de cross-talk. La presente tesis está estructurada en 7 capítulos. En el Capítulo I se exponen las bases del desarrollo de biochips, métodos de patterning con control electroquímico, otros métodos de patterning selectivo y las técnicas de fotolitografía, así como un resumen de la tesis. El Capítulo 2 y 3 describe la síntesis de coloides de oro, la modificación con biomoléculas, los estudios de estabilidad y los estudios fundamentales de electrodeposición de las nanopartículas de oro modificadas sobre la superficie de los electrodos. En el Capítulo 4 se muestra la aplicación de la electrodeposición de nanopartículas de oro biofuncionalizadas para la creación de biochips. El Capítulo 5 describe la inmovilización selectiva de biomoléculas mediante la desprotección electroquímica de monocapas autoensambladas electroactivas. En el Capítulo 6 se muestra la síntesis, caracterización e inmovilización selectiva de derivados de 4,4- bipiridil funcionalizados con HRP. El Capítulo 7 describe el patterning selectivo en la escala micrométrica de dos oxidasas sobre un chip de electrodos interdigitados mediante fotolitografía. Finalmente, el Capítulo 8 resume las conclusiones y el trabajo futuro. / There is an increasing demand of multianalyte sensing devices having potential applications in biomedical, biotechnological, industrial and environmental fields. A good spatial control during biomolecule deposition step is strictly necessary; each biomolecule has to be precisely deposited on the surface of the relevant sensor (eg., an amperometric transducer), avoiding mixing that can compromise the biosensor specificity. The aim of this thesis is to develop different patterning methods for the selective immobilization of biomolecules. The first method is selective electrodeposition of biofunctionalized Au nanoparticles for biosensor arrays. This is an electrochemically controlled patterning method where the Au nanoparticles modified by the enzymes initially and later the enzyme modified Au nanoparticles were electrodeposited selectively on the electrode surface. As a part of this methodology, initially biofunctionalized Au nanoparticles were prepared using three different approcahes. One is Au-thiol dative bonding, the second is direct adsorption and finally electrostatic layerby- layer approach. Different biomolecules like horse radish peroxidase(HRP), glucose oxidase (GOX), bovine serum albumin(BSA), and finally fluorescence labelled oilgonucleotide thiols were used to attch to the Au nanoparticles. Biofunctionalized Au nanoparticles were characterized by different techniques like zeta sizer, UV-Vis spectroscopy, transmission electron microscopy (TEM). UV-Vis spectroscopy showed the successfull modification of Au nanoparticles with a characterstic surface plasmon peak related to the stability. By using zeta sizer, layer-by-layer modification of the Au nanoparticles with redox polymer and enzymes were characterized successfully. Changes of the Au nanoparticles modified with BSA was characterised at different pH s by using the zeta sizer. After the preparation of biofunctionalized particles, some fundamental studies were done with electrodeposition of Au nanoparticles modified with medically important BSA, redox polymer to see how different parameters like potential, time of deposition, interelectrode distance, counter electrode sized, pH, effect the electrodeposition. As a part of these fundamental studies Au colloids modified with HRP and GOX were deposited for studying the electrocalaytic behaviour of the enzymes on the Au nanoparticles after electrodeposition. Later this methodology was applied for creating biosensor arrays by using two different approaches. In the first approach, GOX and HRP functionalized redox polymer modified Au nanoparticles were electrodeposited successfully on an interdigitated electrode (IDE) array with complete absence of non-specific response. In the second approach the particles were modified with an extra redox polymer layer and proved that there is complete absence of nonspecific response after electrodeposition. Moreover, this patterning methodology is generic and can be used for production of different biochips. The second method is another electrochemically controlled patterning method where the electrodes were immobilized with self assembled monolayers with electroactive functionalities which can be tunable with potentials. In this methodology, electroactive self-assembled monolayer contains an active ligand aldehyde which can be readily conjugated to the primary amine group of the biomolecule is protected in the form of acetal. Later when a active potential was applied to the underlying electrode surface, the acetal functionality is deprotected to reveal the aldehyde functionality which was further conjugated to the biomolecule. Two enzymes GOX, HRP were used as model proteins to prove the versatility of this technique. Amperometric as well as real time measurements proved the selective applicability of this technique for creation of biosensor arrays. The third methodology is also an electrochemically controlled patterning methodology where the special advantage of the electrochemically-controlled immobilization of the 4,4-bipyridyl was taken as base for the creation of biosensor arrays. In this methodology, carboxylic acid functionalised 4,4, bipyridyl molecules were synthesized and characterized by electrochemistry. Later the biomolecules were conjugated to these special molecules for the creation of sensor arrays. Proof of selectivity was shown using colourimetrically with minimal non-specific response. Finally in the fourth method which is based on the photolithography technique, two different oxidases GOX & SOX were patterned along with redox polymer selectively on an IDE array using the lift off process with complete absence of cross-talk. As a part of this methodology, different immobilization methods were optimized initially for checking the best optimisation strategy. Later different reagents were tried to optimise the best reagent that prevents the non-specific adsorption. Later this optimised system was applied on the pholithographically created IDE array. Sarcosine and glucose sensors responded selectively to their substrates with complete absence of cross talk. This thesis is structured in 7 chapters. Chapter 1 establishes to basics of the biosensor arrays, electrochemically controlled patterning methods, other selectively patterned methods, photolithography and summary of this thesis. Chapter 2 describes about the gold colloid synthesis, modification with the biomolecules, stability studies. Chapter 3 decribes fundamental studies of the electrodeposition of the functionalised Au nanoparticles on the electrode surface. Chapter 4 describes the application of the electrodeposition of the protein functionalised Au nanoparticles for the creation of biosensor arrays. Chapter 5 describes the selective immobilization of biomolecules through electrochemical deprotection of electroactive self-assembled monolayers. Chapter 6 describes the synthesis, characterization and selective immobilization of HRP functionalized 4,4-bipyridyl derivatives. Chapter 7 describes the selective microscale protein patterning of two oxidases on an IDE array through photolithography. Finally chapter 8 summarizes the conclusions and the future work.
137

Development of enzyme-based biosensors for the detection of organophosphate neurotoxins

Paliwal, Sheetal, Simonian, Aleksandr L., January 2008 (has links) (PDF)
Thesis (Ph. D.)--Auburn University, 2008. / Abstract. Vita. Includes bibliographical references (p. 32-46).
138

Molecular recognition and molecular sensing : single analyte analysis and multi-component sensor arrays for the simultaneous detection of a plethora of analytes /

Lavigne, John James, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 359-363). Available also in a digital version from Dissertation Abstracts.
139

Manipulation of microparticles using a piezoelectric actuator /

deSa, Johann. Lec, Ryszard. January 2009 (has links)
Thesis (Ph.D.)--Drexel University, 2009. / Includes abstract and vita. Includes bibliographical references (leaves 172-181).
140

A portable electronic nose micro-system based on bio-inspired log-spike processing /

Chen, Hung Tat. January 2009 (has links)
Includes bibliographical references (p. 77-83).

Page generated in 0.0311 seconds