• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 441
  • 106
  • 54
  • 48
  • 10
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 4
  • 3
  • Tagged with
  • 880
  • 92
  • 85
  • 72
  • 70
  • 67
  • 64
  • 56
  • 51
  • 51
  • 50
  • 44
  • 42
  • 42
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Protein Engineering for Biosensor Development

Miklos, Aleksandr 24 November 2008 (has links)
<p>Biosensors incorporating proteins as molecular recognition elements for analytes are used in clinical diagnostics, as biological research tools, and to detect chemical threats and pollutants. This work describes the application of protein engineering techniques to address three aspects in the design of protein-based biosensors; the transduction of binding into an observable, the manipulation of affinities, and the diversification of specificities. The periplasmic glucose-binding protein from the hyperthermophile Thermotoga maritima (tmGBP) was fused with green fluorescent protein variants to construct a fluorescent ratiometric sensor that is sufficiently robust to detect glucose up to 67°C. Ligand-binding affinities of tmGBP were changed by altering a C-terminal helical domain that tunes ligand binding affinity through conformational coupling effects. This method was extended to the Escherichia coli arabinose-binding protein. Computational design techniques were used to diversify the specificity of the E. coli maltose-binding protein (ecMBP) to bind ibuprofen, a non-steroidal antiinflammatory drug. These designs ranged in affinity from 0.24 to 0.8 mM and function as reagentless fluorescent sensors. The ligand affinities of ecMBP are tuned by complex interactions that control conformational coupling. These experiments demonstrate that long-range conformational effects as well as molecular recognition interactions need to be considered in the design of high-affinity receptors.</p> / Dissertation
342

An Exploration of Electron-Excited Surface Plasmon Resonance for Use In Biosensor Applications

Wathen, Adam D 12 April 2004 (has links)
Electron-excited surface plasmon resonance (eSPR) is investigated for potential use in biosensors. Optical SPR sensors are commercially available at present and these sensors are extremely sensitive, but have the tendency to be relatively large, expensive, and ignore the potentials of microelectronic technology. By employing the use of various microelectronic and nanotechnology principles, the goal is to eventually design a device that exploits the eSPR phenomenon in order to make a sensor which is siginificantly smaller in size, more robust, and cheaper in cost.
343

Novel liquid and broadband circularly-polarized antennas for wearable biomonitoring applications

Traille, Anya 15 December 2009 (has links)
The explosive growth of the biosensors and health-related wearable monitoring devices has accentuated the need for miniaturized, high-efficiency conformal bio-modules that can operate over a wide range of frequencies, while they can be integrated in wearable and lightweight configurations. One of the major issue for the implementation of Wireless Body Area Networks (WBAN) is the very limited range of commonly used metal antennas. Due to the high dielectric constant between the metal antenna material (as well as the metal-based circuitry) and the mostly "ionized-water" human body parts, the near-field gets significantly disturbed, while local reflections due to the dielectric mismatch further shorten the operation range. Even wearable bracelet-like sensing devices have a very low range due to this reason. Thus, there are two major aspects that are going to be addressed in this Thesis: enhanced-range wearable antennas for wireless biosensors and compact "rugged-polarization" wireless sensor readers.
344

Oligo(ethylene glycol) chains: applications and advancements in biosensing

Bryant, Jonathan James 19 October 2010 (has links)
Oligo(ethylene glycol) groups have been used as substituents in poly(p-phenyleneethynylene)s (PPEs) to provide solubility, and to boost quantum yield. Properties such as water-solubility and increased quantum yield in aqueous solution make these conjugated systems promising for biosensory applications. In this thesis, a PPE containing a branched ethylene glycol side chain is synthesized as part of a polymer array for glycan biosensing. I also report that the same side chain can be put to use in a red-emissive polymer to lend water solubility. Another monomeric unit, containing ethylene glycol chains, is incorporated into a PPE to create an ampiphilic polymer. The versatility of these polymers allows them to be used for a variety of purposes, some of which will be described herein.
345

Determination of vitality from a non-invasive biomedical measurement for use in integrated biometric devices

Derakhshani, Reza. January 1999 (has links)
Thesis (M.S.)--West Virginia University, 1999. / Title from document title page. Document formatted into pages; contains x, 126 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. [72]-75).
346

CMOS fingerprint sensor electrostatic modeling

Soora, Praveen K., January 2000 (has links)
Thesis (M.S.)--West Virginia University, 2000. / Title from document title page. Document formatted into pages; contains viii, 94 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 88-89).
347

Increased sensitivity of enzyme-based amperometric glucose biosensors and their application as time-temperature integrators

Reyes de Corcuera, José Ignacio, January 2004 (has links) (PDF)
Thesis (Ph. D. in engineering science)--Washington State University. / Includes bibliographical references.
348

Integrated impedance spectroscopy biosensors

Manickam, Arun 11 July 2012 (has links)
Affinity-based biosensors, or in short biosensors, are extremely powerful and versatile analytical tools which are used for the detection of a wide variety of bio-molecules. In recent times, there has been a need for developing low-cost and portable affinity-based biosensor platforms. Such systems need to have a high density of detection sites (i.e biosensing elements) in order to simultaneously detect multiple analytes in a single sample. This has led to the creation of integrated biosensors, which make use of integrated circuits (ICs) for bio-molecular detection. In such systems, it has been demonstrated that by taking advantage of the capabilities of semiconductor and very large scale integrated (VLSI) circuit fabrication processes, it is possible to build compact miniaturized biosensors, which can be used in wide variety of applications such as in molecular diagnostics and for environmental monitoring. Among the various detection modalities for biosensors, Electrochemical Impedance Spectroscopy (EIS) permits real-time detection and has label-free detection capabilities. EIS is fully electronic in nature. Hence, it can be implemented using standard IC technologies. The versatility and ease of integration of EIS makes it a promising candidate for developing integrated biosensor platforms. In this thesis, we first examine the underlying principles of EIS method of biosensing. By analyzing an immunosensor assay as an example, we show that EIS based biosensing is a highly sensitive detection method, which can be used for the detection of a wide variety of analytes. Since EIS relies on small impedance changes in order to perform detection, it requires highly accurate models for the electrode-electrolyte systems. Hence, we also introduce a compact modeling technique for the distributed electrode-electrolyte systems with non-uniform electric fields, which is capable of modelling noise and other non-idealities in EIS. In the second part of this thesis, we describe the design and implementation of an integrated EIS biosensor array, built using a standard complementary metal-oxide-semiconductor (CMOS) process. The chip is capable of measuring admittance values as small as 10nS and has a wide dynamic range (90dB) over a wide range of frequencies (10Hz-50MHz). We also report the results obtained from the DNA and protein detection experiments performed using this chip. / text
349

Bead based microreactors for sensing applications

Wong, Jorge 28 August 2008 (has links)
Not available / text
350

Coupling aptamer biosensors to signal amplification

Yang, Litao 28 August 2008 (has links)
Not available / text

Page generated in 0.0169 seconds