• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 220
  • 64
  • 24
  • 12
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 404
  • 404
  • 144
  • 101
  • 94
  • 73
  • 73
  • 69
  • 63
  • 60
  • 57
  • 49
  • 42
  • 42
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Polarimetric and spectrographic instrumentation to enable next generation x-ray observatories

Marlowe, Hannah Rebecca 01 May 2016 (has links)
Ultraluminous X-ray (ULX) sources are non-nuclear extragalactic accreting compact objects whose X-ray luminosities exceed the Eddington limit for stellar mass black hole binaries (BHB). Their high luminosities suggest they are either intermediate mass black holes, that their emission is beamed, or that they are emitting at super-Eddington rates. We observed the ULX IC 342 X-1 simultaneously in X-ray and radio with Chandra and the VLA to investigate previously reported unresolved radio emission coincident with the ULX. The Chandra spectrum appears to be consistent with an accretion disc-dominated thermal state and suggests a mass of the black hole using the modeled inner disc temperature to be 157Mʘ ≤ M √ (cosi) ≤ 200 Mʘ. No significant radio emission was observed, consistent with the source being in a thermal disc-dominated state. Reanalysis of previous X-ray observations of the source shows that high energy curvature often interpreted as evidence for supercritical accretion cannot confidently be identified using the 2-10 keV energy band. Black hole systems such as BHBs, ULXs, and AGN represent the greatest test labs in the universe for the study of extreme gravity. Emission from the accretion disk and scattering from the surrounding corona allow study of the ultra-strong gravity and magnetic fields very near the central BH engine. However, many of these effects are imprinted as polarization of the emission and are invisible to spectral and timing studies alone. The outflows from AGN are also thought to play a key role in galaxy shaping and cluster formation. High efficiency and spectral resolution are required to measure ionization-velocities and density parameters from these sources to constrain the outflow structure. Beamline studies and theoretical modeling were carried out to characterize the throughput and spectral resolving power of off-plane gratings for use in future x-ray observatories which will make these measurements. Additionally, synchrotron measurements were carried out to test theoretical predictions of strong polarization response for off-plane diffraction gratings. The empirical results of this study are the first to demonstrate a lack of polarization sensitivity for grazing-incidence off-plane gratings and support more complex modeling results than used previously.
182

Fundamental aspects of the expansion of the universe and cosmic horizons

Davis, Tamara Maree, Physics, Faculty of Science, UNSW January 2004 (has links)
We use standard general relativity to clarify common misconceptions about fundamental aspects of the expansion of the Universe. In the context of the new standard Lambda-CDM cosmology we resolve conflicts in the literature regarding cosmic horizons and the Hubble sphere (distance at which recession velocity equals c) and we link these concepts to observational tests. We derive the dynamics of a non-comoving galaxy and generalize previous analyses to arbitrary FRW universes. We also derive the counter-intuitive result that objects at constant proper distance have a non-zero redshift. Receding galaxies can be blueshifted and approaching galaxies can be redshifted, even in an empty universe for which one might expect special relativity to apply. Using the empty universe model we demonstrate the relationship between special relativity and Friedmann-Robertson-Walker cosmology. We test the generalized second law of thermodynamics (GSL) and its extension to incorporate cosmological event horizons. In spite of the fact that cosmological horizons do not generally have well-defined thermal properties, we find that the GSL is satisfied for a wide range of models. We explore in particular the relative entropic &quoteworth&quote of black hole versus cosmological horizon area. An intriguing set of models show an apparent entropy decrease but we anticipate this apparent violation of the GSL will disappear when solutions are available for black holes embedded in arbitrary backgrounds. Recent evidence suggests a slow increase in the fine structure constant over cosmological time scales. This raises the question of which fundamental quantities are truly constant and which might vary. We show that black hole thermodynamics may provide a means to discriminate between alternative theories invoking varying constants, because some variations in the fundamental &quoteconstants&quote could lead to a violation of the generalized second law of thermodynamics.
183

Higher-Dimensional Gravitational Objects with External Fields

Abdolrahimi, Shohreh 11 1900 (has links)
This thesis summarizes a study of higher-dimensional distorted objects such as a distorted 5-dimensional Schwarzschild-Tangherlini black hole. It considers a particular type of distortion corresponding to an external, static distribution of matter and fields around this object. The corresponding spacetime can be presented in the generalized Weyl form which has an RxU(1)xU(1) group of isometries. This is a natural generalization of the 4-dimensional Weyl form which was presented in the paper by Emparan and Reall [1]. In the frame of this generalized Weyl form one can derive an exact analytic solution to the Einstein equations which describes the non-linear interaction of the black hole with external matter and gravitational fields. This research focuses on the effects of such interaction on the event horizon and the interior of the black hole. A similar study was presented in the papers [2] for 4-dimensional neutral black holes, where special duality relations between a neutral black hole horizon and singularity were derived. In relation to this work it is interesting to study which properties of distorted black holes remain present in the 5-dimensional case. This thesis also gives an investigation of the d-dimensional Fisher solution which represents a static, spherically symmetric, asymptotically flat spacetime with a massless scalar field. This solution has a naked singularity. It is shown that the d-dimensional Schwarzschild-Tangherlini solution and the Fisher solution are dual to each other. [1] R. Emparan and H. S. Reall, Phys. Rev. D, 65, 084025 (2002). [2] V. P. Frolov and A. A. Shoom, Phys. Rev. D, 76, 064037 (2007).
184

Demographics of supermassive black holes

Schulze, Andreas January 2011 (has links)
Supermassive black holes are a fundamental component of the universe in general and of galaxies in particular. Almost every massive galaxy harbours a supermassive black hole (SMBH) in its center. Furthermore, there is a close connection between the growth of the SMBH and the evolution of its host galaxy, manifested in the relationship between the mass of the black hole and various properties of the galaxy's spheroid component, like its stellar velocity dispersion, luminosity or mass. Understanding this relationship and the growth of SMBHs is essential for our picture of galaxy formation and evolution. In this thesis, I make several contributions to improve our knowledge on the census of SMBHs and on the coevolution of black holes and galaxies. The first route I follow on this road is to obtain a complete census of the black hole population and its properties. Here, I focus particularly on active black holes, observable as Active Galactic Nuclei (AGN) or quasars. These are found in large surveys of the sky. In this thesis, I use one of these surveys, the Hamburg/ESO survey (HES), to study the AGN population in the local volume (z~0). The demographics of AGN are traditionally represented by the AGN luminosity function, the distribution function of AGN at a given luminosity. I determined the local (z<0.3) optical luminosity function of so-called type 1 AGN, based on the broad band B_J magnitudes and AGN broad Halpha emission line luminosities, free of contamination from the host galaxy. I combined this result with fainter data from the Sloan Digital Sky Survey (SDSS) and constructed the best current optical AGN luminosity function at z~0. The comparison of the luminosity function with higher redshifts supports the current notion of 'AGN downsizing', i.e. the space density of the most luminous AGN peaks at higher redshifts and the space density of less luminous AGN peaks at lower redshifts. However, the AGN luminosity function does not reveal the full picture of active black hole demographics. This requires knowledge of the physical quantities, foremost the black hole mass and the accretion rate of the black hole, and the respective distribution functions, the active black hole mass function and the Eddington ratio distribution function. I developed a method for an unbiased estimate of these two distribution functions, employing a maximum likelihood technique and fully account for the selection function. I used this method to determine the active black hole mass function and the Eddington ratio distribution function for the local universe from the HES. I found a wide intrinsic distribution of black hole accretion rates and black hole masses. The comparison of the local active black hole mass function with the local total black hole mass function reveals evidence for 'AGN downsizing', in the sense that in the local universe the most massive black holes are in a less active stage then lower mass black holes. The second route I follow is a study of redshift evolution in the black hole-galaxy relations. While theoretical models can in general explain the existence of these relations, their redshift evolution puts strong constraints on these models. Observational studies on the black hole-galaxy relations naturally suffer from selection effects. These can potentially bias the conclusions inferred from the observations, if they are not taken into account. I investigated the issue of selection effects on type 1 AGN samples in detail and discuss various sources of bias, e.g. an AGN luminosity bias, an active fraction bias and an AGN evolution bias. If the selection function of the observational sample and the underlying distribution functions are known, it is possible to correct for this bias. I present a fitting method to obtain an unbiased estimate of the intrinsic black hole-galaxy relations from samples that are affected by selection effects. Third, I try to improve our census of dormant black holes and the determination of their masses. One of the most important techniques to determine the black hole mass in quiescent galaxies is via stellar dynamical modeling. This method employs photometric and kinematic observations of the galaxy and infers the gravitational potential from the stellar orbits. This method can reveal the presence of the black hole and give its mass, if the sphere of the black hole's gravitational influence is spatially resolved. However, usually the presence of a dark matter halo is ignored in the dynamical modeling, potentially causing a bias on the determined black hole mass. I ran dynamical models for a sample of 12 galaxies, including a dark matter halo. For galaxies for which the black hole's sphere of influence is not well resolved, I found that the black hole mass is systematically underestimated when the dark matter halo is ignored, while there is almost no effect for galaxies with well resolved sphere of influence. / Supermassereiche Schwarze Löcher sind ein fundamentaler Bestandteil unseres Universims im Allgemeinen, und von Galaxien im Besonderen. Fast jede massereiche Galaxie beherbergt ein supermassereiches Schwarzes Loch in seinem Zentrum. Außerdem existiert eine enge Beziehung zwischen dem Wachstum des Schwarzen Loches und der Entwicklung seiner umgebenden Galaxie. Diese zeigt sich besonders in der engen Beziehung zwischen der Masse eines Schwarzen Loches und den Eigenschaften der sphäroidalen Komponente der Galaxie, beispielsweise seiner stellaren Geschwindigkeitsdispersion, seiner Leuchtkraft und seiner Masse. Diese Beziehung erklären zu können, sowie das Wachstum von Schwarzen Löchern zu verstehen, liefert einen wichtigen Beitrag zu unserem Bild der Entstehung und Entwicklung von Galaxien. In dieser Arbeit steuere ich verschiedene Beiträge dazu bei unser Verständnis des Vorkommens Schwarzer Löcher und der Beziehung zu ihren Galaxien zu verbessern. Zunächst versuche ich ein vollständiges Bild der Anzahl und Eigenschaften Schwarzer Löcher zu erhalten. Dazu beschränke ich mich auf aktive Schwarze Löcher, wie man sie im Universum als Aktive Galaxienkerne (AGN) in großen Himmelsdurchmusterungen finden kann. Ich benutze eine solche Durchmusterung, das Hamburg/ESO Survey (HES), um die AGN Population im lokalen Universum zu studieren. Dazu habe ich die optische Leuchtkraftfunktion von AGN bestimmt. Diese habe ich mit anderen Ergebnissen leuchtschwächerer AGN kombiniert um die bisher beste AGN Leuchtkraftfunktion im lokalen Universum zu erhalten. Der Vergleich mit Ergebnissen bei höherer kosmischer Rotverschiebung bestätigt unser Bild des sogenannten "AGN downsizing". Dies sagt aus, dass leuchtkräftige AGN bei hoher Rotverschiebung am häufigsten vorkommen, während leuchtschwache AGN bei niedriger Rotverschiebung am häufigsten sind. Allerdings verrät uns die AGN Leuchtkraftfunktion allein noch nicht das ganze Bild der Demographie Schwarzer Löcher. Vielmehr sind wir an den zugrunde liegenden Eigenschaften, vor allem der Masse und der Akkretionsrate der Schwarzen Löcher, sowie deren statistischen Verteilungsfunktionen, interessiert. Ich habe eine Methode entwickelt um diese beiden Verteilungsfunktionen zu bestimmen, basierend auf der Maximum-Likelihood-Methode. Ich habe diese Methode benutzt um die aktive Massenfunktion Schwarzer Löcher, sowie die Verteilungsfunktion ihrer Akkretionsraten für das lokale Universum aus dem HES zu bestimmen. Sowohl die Akkretionsraten, als auch die Massen der Schwarzen Löcher zeigen intrinsisch eine breite Verteilung, im Gegensatz zur schmaleren beobachtbaren Verteilung. Der Vergleich der aktiven Massenfunktion mit der gesamten Massenfunktion Schwarzer Löcher zeigt ebenfalls Hinweise auf "AGN downsizing". Als nächstes habe ich mich mit Untersuchungen zur zeitlichen Entwicklung in den Beziehungen zwischen Schwarzem Loch und Galaxie beschäftigt. Diese kann helfen unser theoretisches Veständnis der physikalischen Vorgänge zu verbessern. Beobachtungen sind immer auch Auswahleffekten unterworfen. Diese können die Schlussfolgerungen aus den Beobachtungen zur Entwicklung in den Beziehungen beeinflussen, wenn sie nicht entsprechend berücksichtigt werden. Ich habe den Einfluss von Auswahleffekten auf AGN Stichproben im Detail untersucht, und verschiedende möchgliche Einflussquellen identifiziert, die die Beziehung verfälschen können. Wenn die Auswahlkriterien der Stichprobe, sowie die zugrunde liegenden Verteilungen bekannt sind, so ist es möglich für die Auswahleffekte zu korrigieren. Ich habe eine Methode entwickelt, mit der man die intrinsische Beziehung zwischem Schwarzem Loch und Galaxie aus den Beobachtungen rekonstruieren kann. Schließlich habe ich mich auch inaktiven Schwarzen Löchern und der Bestimmung ihrer Massen gewidmet. Eine der wichtigsten Methoden die Masse Schwarzer Löcher in normalen Galaxien zu bestimmen ist stellardynamische Modellierung. Diese Methode benutzt photometrische und kinematische Beobachtungen, und rekonstruiert daraus das Gravitationspotenzial aus der Analyse stellarer Orbits. Bisher wurde in diesen Modellen allerdings der Einfluss des Halos aus Dunkler Materie vernachlässigt. Dieser kann aber die Bestimmung der Masse des Schwarzen Loches beeinflussen. Ich habe 12 Galaxien mit Hilfe stellardynamischer Modellierung untersucht und dabei auch den Einfluss des Halos aus Dunkler Materie berücksichtigt. Für Galaxien bei denen der Einflussbereich des Schwarzen Loches nicht sehr gut räumlich aufgelöst war, wird die Masse des Schwarzen Loches systematisch unterschätzt, wenn der Dunkle Materie Halo nicht berücksichtigt wird. Auf der anderen Seite ist der Einfluss gering, wenn die Beobachtungen diesen Einflussbereich gut auflösen können.
185

Numerical studies of Black Hole initial data

Koppitz, Michael January 2004 (has links)
Diese Doktorarbeit behandelt neue Methoden der numerischen Evolution von Systemen mit binären Schwarzen Löchern. Wir analysieren und vergleichen Evolutionen von verschiedenen physikalisch motivierten Anfangsdaten und zeigen Resultate der ersten Evolution von so genannten 'Thin Sandwich' Daten, die von der Gruppe in Meudon entwickelt wurden. <br /> Zum ersten Mal wurden zwei verschiedene Anfangsdaten anhand von dreidimensionalen Evolutionen verglichen: die Puncture-Daten und die Thin-Sandwich Daten. Diese zwei Datentypen wurden im Hinblick auf die physikalischen Eigenschaften während der Evolution verglichen. <br /> Die Evolutionen zeigen, dass die Meudon Daten im Vergleich zu Puncture Daten wesentlich mehr Zeit benötigen bevor sie kollidieren. Dies deutet auf eine bessere Abschätzung der Parameter hin. Die Kollisionszeiten der numerischen Evolutionen sind konsistent mit unabhängigen Schätzungen basierend auf Post-Newtonschen Näherungen die vorhersagen, dass die Schwarzen Löcher ca. 60% eines Orbits rotieren bevor sie kollidieren. / This thesis presents new approaches to evolutions of binary black hole systems in numerical relativity. We analyze and compare evolutions from various physically motivated initial data sets, in particular presenting the first evolutions of Thin Sandwich data generated by the Meudon group. <br /> For the first time two different quasi-circular orbit initial data sequences are compared through fully 3d numerical evolutions: Puncture data and Thin Sandwich data (TSD) based on a helical killing vector ansatz. The two different sets are compared in terms of the physical quantities that can be measured from the numerical data, and in terms of their evolutionary behavior. <br /> The evolutions demonstrate that for the latter, "Meudon" datasets, the black holes do in fact orbit for a longer amount of time before they merge, in comparison with Puncture data from the same separation. This indicates they are potentially better estimates of quasi-circular orbit parameters. The merger times resulting from the numerical simulations are consistent with independent Post-Newtonian estimates that the final plunge phase of a black hole inspiral should take 60% of an orbit.
186

Finding periods in the high mass x-ray binary stars of the magellanic clouds

Briand, Lorin Michel Pierre 26 April 2011
High Mass X-Ray Binary Stars (HMXBs) are stars that contain one early-type main sequence or giant star and one of a black hole, neutron star or white dwarf. HMXBs in the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC) are instructive to study because both galaxies are metal poor in compari- son to the Milky Way and they are fairly transparent to both optical and X-ray radiation. This allows a more complete study of the whole population, without the biasing effects of gas and dust that occur in our own Galaxy. The objective of this study was to find the periods of HMXBs in the LMC and SMC with known optical counterparts in the dataset acquired by the Robotic Optical Transient Search Ex- periment telescope. Two possible orbital periods were found for the objects XTE J0055-724 and RX J0101.3-7211 of 1724 days and 478 days, respectively. Continued observations are recommended to conrm the two periods.
187

Kerr Black Holes And Its Generalizations

Cebeci, Hakan 01 October 2003 (has links) (PDF)
The scalar tensor theory of gravitation is constructed in D dimensions in all possible geometries of spacetime. In Riemannian geometry, theory of gravitation involves a spacetime metric g with a torsion-free, metric compatible connection structure. If the geometry is non-Riemannian, then the gauge theory of gravitation can be constructed with a spacetime metric g and a connection structure with torsion. In non-Riemannian theory, connections may be metric compatible or non-metric compatible. It is shown that theory of gravitation which involves non-metric compatible connection and torsion, can be rewritten in terms of torsion-free theory. It is also shown that scalar tensor theory can be reformulated in Einstein frame by applying a conformal transformation. By adding an antisymmetric axion field, the axi-dilaton theory is studied in Riemannian and non-Riemannian geometries. Motion of massive test particles is examined in all these geometries. The static, spherically symmetric and stationary, Kerr-type axially symmetric solutions of the scalar tensor and axi-dilaton theories are presented. As an application, the geodesic elliptical orbits based on a torsion-free connection and the autoparallel orbits based on a connection with a torsion, are examined in Kerr Brans-Dicke geometry. Perihelion shift of the elliptical orbit is calculated in both cases and the results are compared.
188

Finding periods in the high mass x-ray binary stars of the magellanic clouds

Briand, Lorin Michel Pierre 26 April 2011 (has links)
High Mass X-Ray Binary Stars (HMXBs) are stars that contain one early-type main sequence or giant star and one of a black hole, neutron star or white dwarf. HMXBs in the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC) are instructive to study because both galaxies are metal poor in compari- son to the Milky Way and they are fairly transparent to both optical and X-ray radiation. This allows a more complete study of the whole population, without the biasing effects of gas and dust that occur in our own Galaxy. The objective of this study was to find the periods of HMXBs in the LMC and SMC with known optical counterparts in the dataset acquired by the Robotic Optical Transient Search Ex- periment telescope. Two possible orbital periods were found for the objects XTE J0055-724 and RX J0101.3-7211 of 1724 days and 478 days, respectively. Continued observations are recommended to conrm the two periods.
189

Steady-state spherical accretion using smoothed particle hydrodynamics

Baumann, Mark Chapple 06 February 2012 (has links)
Due to its adaptable nature in a broad range of problem domains, Smoothed Particle Hydrodynamics (SPH) is a popular numerical technique for computing solutions in astrophysics. This dissertation discusses the SPH technique and assesses its capabilities for reproducing steady-state spherically-symmetric accretion flow. The accretion scenario is of great interest for its applicability in a diverse array of astrophysical phenomena and, under certain assumptions, it also provides an accepted analytical solution against which the numerical method can be validated. After deriving the necessary equations from astrophysical fluid dynamics, giving a detailed review of solving the steady-state spherical accretion problem, and developing the SPH methodology, this work suggests solutions to the issues that must be overcome in order to successfully employ the SPH methodology to reproduce steady-state spherical accretion flow. Several techniques for setting initial data are addressed, resolution requirements are illustrated, inner and outer boundary conditions are discussed, and artificial dissipation parameters and methodologies are explored. / text
190

Boosted apparent horizons

Akcay, Sarp 06 March 2014 (has links)
Boosted black holes play an important role in General Relativity (GR), especially in relation to the binary black hole problem. Solving Einstein vacuum equations in the strong field regime had long been the holy grail of numerical relativity until the significant breakthroughs made in 2005 and 2006. Numerical relativity plays a crucial role in gravitational wave detection by providing numerically generated gravitational waveforms that help search for actual signatures of gravitational radiation exciting laser interferometric detectors such as LIGO, VIRGO and GEO600 here on Earth. Binary black holes orbit each other in an ever tightening adiabatic inspiral caused by energy loss due to gravitational radiation emission. As the orbits shrinks, the holes speed up and eventually move at relativistic speeds in the vicinity of each other (separated by ~ 10M or so where 2M is the Schwarzschild radius). As such, one must abandon the Newtonian notion of a point mass on a circular orbit with tangential velocity and replace it with the concept of black holes, cloaked behind spheroidal event horizons that become distorted due to strong gravity, and further appear distorted because of Lorentz effects from the high orbital velocity. Apparent horizons (AHs) are 2-dimensional boundaries that are trapped surfaces. Conceptually, one can think of them as 'quasi-local' definitions for a black hole horizon. This will be explained in more detail in chapter 2. Apparent horizons are especially important in numerical relativity as they provide a computationally efficient way of describing and locating a black hole horizon. For a stationary spacetime, apparent horizons are 2-dimensional cross-sections of the event horizon, which is itself a 3-dimensional null surface in spacetime. Because an AH is a 2-dimensional cross-section of an event horizon, its area remains invariant under distortions due to Lorentz boosts although its shape changes. This fascinating property of the AH can be attributed to the fact that it is a cross-section of a null surface, which, under the boost, still remains null and the total area does not change. Although this invariance of the area is conceptually easy to see it is less straightforward to derive this result. We present two different ways to show the area invariance. One is based on the spin-boost transformation of the null tetrad and the other a direct coordinate transformation of the boosted metric under the Lorentz boost. Despite yielding identical results the two methods differ significantly and we elaborate on this in much more detail. We furthermore show that the use of the spin-boost transformation is not well-suited for binary black hole spacetime and that the spin-boost is fundamentally different from a Lorentz boost although the transformation equations look very similar. We also provide a way to visualize the distorted horizons and look at the multi-pole moments of these surfaces under small boosts. We finish by summarizing our main results at the end and by commenting on the binding energy of the binary and how the apparent horizon is distorted due to presence of another black hole. / text

Page generated in 0.0215 seconds