101 |
Topics on D-branes and HolographySmedbäck, Mikael January 2004 (has links)
<p>We discuss various aspects of D-branes in string theory and holography in string theory and loop quantum gravity. </p><p>One way to study D-branes is from a microscopic perspective, using conformal field theory techniques. For example, we investigate the question of how D-branes can be introduced into orbifolded theories. Another way to study D-branes is from a space-time perspective. An example is provided by unstable D-branes, where we compute an effective action describing the decay of a bosonic D-brane. </p><p>The holographic principle is a proposed duality which suggests that a theory in any region has a dual description on the boundary. We explore two examples: (1) The area law for the entropy of a black hole in the framework of loop quantum gravity, related to particular regularizations of the area operator. (2) The AdS/CFT correspondence proposal, where we investigate a string pulsating on AdS using spin chains.</p>
|
102 |
Topics on D-branes and HolographySmedbäck, Mikael January 2004 (has links)
We discuss various aspects of D-branes in string theory and holography in string theory and loop quantum gravity. One way to study D-branes is from a microscopic perspective, using conformal field theory techniques. For example, we investigate the question of how D-branes can be introduced into orbifolded theories. Another way to study D-branes is from a space-time perspective. An example is provided by unstable D-branes, where we compute an effective action describing the decay of a bosonic D-brane. The holographic principle is a proposed duality which suggests that a theory in any region has a dual description on the boundary. We explore two examples: (1) The area law for the entropy of a black hole in the framework of loop quantum gravity, related to particular regularizations of the area operator. (2) The AdS/CFT correspondence proposal, where we investigate a string pulsating on AdS using spin chains.
|
Page generated in 0.024 seconds