• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 2
  • Tagged with
  • 22
  • 22
  • 22
  • 10
  • 9
  • 9
  • 9
  • 8
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Toward Canonical General Relativity in the Loop Gravity Phase Space

Ziprick, Jonathan January 2013 (has links)
The continuous, kinematical Hilbert space of loop quantum gravity is built upon a family of spaces $\mathcal{H}_\Gamma$, each associated to a different \textit{graph} $\Gamma$, i.e. a network of interconnected one-dimensional links $\l$, embedded within a spatial geometry. The kinematics of loop quantum gravity are well-established, but difficult problems remain for the dynamics. There are two steps in getting to the quantum theory from the classical one: first, the embedded graphs are used to define a smearing of the continuous gravitational fields to obtain a holonomy $h_\l$ and flux $\X_\l$ for each link of the graph, giving a phase space $P_\Gamma$; second, this phase space is quantized to yield a finite dimensional Hilbert space $\mathcal{H}_\Gamma$. The intermediate classical theory in terms of $P_\Gamma$ phase spaces remains largely unexplored, and here we endeavour to develop it. If we can find such a theory that is consistent with general relativity, then we will have a theory of gravity based upon finite-dimensional phase spaces that is nicely set up for quantization \`a la loop quantum gravity. To begin, we first review the basic elements of the quantum theory before introducing the classical phase space structure. Within this framework we show that there is a one-to-one correspondence between the data on a graph and an equivalence class of continuous geometries. We find that a particular member of each class, the spinning geometry, makes a promising candidate as a gauge choice to represent the $(h_\l, \X_\l)$ data in the continuous theory, helping us to formulate a dynamics for the discrete theory. Considering all of the possible graphs, it is important to know how we can evolve from one phase space into another, and how the dynamics in $P_\Gamma$ relates to the continuous evolution. There is a geometrical description of phase spaces where dynamics appears as a class of subspaces within a symplectic manifold. We use this picture to formulate a dynamics between $P_\Gamma$ phase spaces, and demonstrate this process on a simple model that mimics the case of full gravity. Following this, we study a system of point particles in three-dimensional gravity which provides an illuminating demonstration of what we hope to accomplish for full gravity. We develop the classical theory of point particles and show that it can be described by an evolving triangulation where discrete bistellar flips can occur. From here we define the loop gravity theory and show that it agrees with the continuous theory, having two-to-two moves on the graph which mirror the bistellar flips in the triangulation. The results are promising for finding a dynamics for four-dimensional loop gravity, and if the full theory is developed further, we expect it will lead to a breakthrough in the quantum dynamics.
2

LOOP QUANTUM GRAVITY DYNAMICS: MODELS AND APPLICATIONS

Unknown Date (has links)
In this dissertation we study the dynamics of loop quantum gravity and its applications. We propose a tunneling phenomenon of a black hole-white hole transition and derive an amplitude for such transition using the spinfoam framework. We investigate a special class of kinematical states for loop quantum gravity - Bell spin networks - and show that their entanglement entropy obeys the area law. We develop a new spinfoam vertex amplitude that has the correct semi-classical limit. We then apply this new amplitude to calculate the graviton propagator and a cosmological transition amplitude. The results of these calculations show feasibility of computations with the new amplitude and its viability as a spinfoam model. Finally, we use physical principles to radically constrain ambiguities in the cosmological dynamics and derive unique Hamiltonian dynamics for Friedmann-Robertson-Walker and Bianchi I cosmologies. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection
3

Coupling matter to loop quantum gravity

Sahlmann, Hanno January 2002 (has links)
Motiviert durch neuere Vorschläge zur experimentellen Untersuchung von Quantengravitationseffekten werden in der vorliegenden Arbeit Annahmen und Methoden untersucht, die für die Vorhersagen solcher Effekte im Rahmen der Loop-Quantengravitation verwendet werden können. Dazu wird als Modellsystem ein skalares Feld, gekoppelt an das Gravitationsfeld, betrachtet. <br /> Zunächst wird unter bestimmten Annahmen über die Dynamik des gekoppelten Systems eine Quantentheorie für das Skalarfeld vorgeschlagen. Unter der Annahme, dass sich das Gravitationsfeld in einem semiklassischen Zustand befindet, wird dann ein &quot;QFT auf gekrümmter Raumzeit-Limes&quot; dieser Theorie definiert. Im Gegensatz zur gewöhnlichen Quantenfeldtheorie auf gekrümmter Raumzeit beschreibt die Theorie in diesem Grenzfall jedoch ein quantisiertes Skalarfeld, das auf einem (klassisch beschriebenen) Zufallsgitter propagiert. <br /> Sodann werden Methoden vorgeschlagen, den Niederenergieliemes einer solchen Gittertheorie, vor allem hinsichtlich der resultierenden modifizierten Dispersonsrelation, zu berechnen. Diese Methoden werden anhand von einfachen Modellsystemen untersucht. <br /> Schließlich werden die entwickelten Methoden unter vereinfachenden Annahmen und der Benutzung einer speziellen Klasse von semiklassischen Zuständen angewandt, um Korrekturen zur Dispersionsrelation des skalaren und des elektromagnetischen Feldes im Rahmen der Loop-Quantengravitation zu berechnen. Diese Rechnungen haben vorläufigen Charakter, da viele Annahmen eingehen, deren Gültigkeit genauer untersucht werden muss. Zumindest zeigen sie aber Probleme und Möglichkeiten auf, im Rahmen der Loop-Quantengravitation Vorhersagen zu machen, die sich im Prinzip experimentell verifizieren lassen. / Motivated by recent proposals on the experimental detectability of quantum gravity effects, the present thesis investigates assumptions and methods which might be used for the prediction of such effects within the framework of loop quantum gravity. To this end, a scalar field coupled to gravity is considered as a model system. <br /> Starting from certain assumptions about the dynamics of the coupled gravity-matter system, a quantum theory for the scalar field is proposed. Then, assuming that the gravitational field is in a semiclassical state, a &quot;QFT on curved space-time limit&quot; of this theory is defined. In contrast to ordinary quantum field theory on curved space-time however, in this limit the theory describes a quantum scalar field propagating on a (classical) random lattice. <br /> Then, methods to obtain the low energy limit of such a lattice theory, especially regarding the resulting modified dispersion relations, are discussed and applied to simple model systems. <br /> Finally, under certain simplifying assumptions, using the methods developed before as well as a specific class of semiclassical states, corrections to the dispersion relations for the scalar and the electromagnetic field are computed within the framework of loop quantum gravity. These calculations are of preliminary character, as many assumptions enter whose validity remains to be studied more thoroughly. However they exemplify the problems and possibilities of making predictions based on loop quantum gravity that are in principle testable by experiment.
4

Emergence and Phenomenology in Quantum Gravity

Premont-Schwarz, Isabeau January 2010 (has links)
In this thesis we investigate two approaches to quantum gravity. The first is the emergence of gravity from a discrete fundamental theory, and the second is the direct quantisation of gravity. For the first we develop tools to determine with relatively high accuracy the speed of propagation of information in collective modes which ultimately should give us some information about the emergent causal structure. We found a way of finding the dependence on the relative interaction strengths of the Hamiltonian and we also managed to calculate this speed in the case where the operators in the Hamitonian were not necessarily bounded. For the second approach, we investigated the phenomenology of Loop Quantum Gravity. We found that ultra light black holes (lighter than the Planck mass) have interesting new properties on top of being non-singular. First their horizon is hidden behind a Plancksized wormhole, second their specific heat capacity is positive and they are quasi-stable, they take an infinite amount of time evaporate. We investigated the dynamics of their collapse and evaporation explicitly seeing that not only was there no singularity, but there is also no information loss problem. Looking at how primordial black holes were in existence, we found that they might account for a significant portion of dark matter. And if they did, their radiation spectrum is such that the black holes in the dark matter halo of our galaxy could be the source for the ultra high energy cosmic rays we observe on earth.
5

Emergence and Phenomenology in Quantum Gravity

Premont-Schwarz, Isabeau January 2010 (has links)
In this thesis we investigate two approaches to quantum gravity. The first is the emergence of gravity from a discrete fundamental theory, and the second is the direct quantisation of gravity. For the first we develop tools to determine with relatively high accuracy the speed of propagation of information in collective modes which ultimately should give us some information about the emergent causal structure. We found a way of finding the dependence on the relative interaction strengths of the Hamiltonian and we also managed to calculate this speed in the case where the operators in the Hamitonian were not necessarily bounded. For the second approach, we investigated the phenomenology of Loop Quantum Gravity. We found that ultra light black holes (lighter than the Planck mass) have interesting new properties on top of being non-singular. First their horizon is hidden behind a Plancksized wormhole, second their specific heat capacity is positive and they are quasi-stable, they take an infinite amount of time evaporate. We investigated the dynamics of their collapse and evaporation explicitly seeing that not only was there no singularity, but there is also no information loss problem. Looking at how primordial black holes were in existence, we found that they might account for a significant portion of dark matter. And if they did, their radiation spectrum is such that the black holes in the dark matter halo of our galaxy could be the source for the ultra high energy cosmic rays we observe on earth.
6

Spin Network Evaluation and the Asymptotic Behavior

Jayasooriya Arachchilage, Dinush Lanka Panditharathna 01 September 2020 (has links)
AN ABSTRACT OF THE DISSERTATION OFDinush Lanka Panditharathna Jayasooriya Arachchilage, forthe Doctor of Philosophy degree in MATHEMATICS, presented on June 22, 2020 at SouthernIllinois University Carbondale.TITLE: SPIN NETWORK EVALUATION AND THE ASYMPTOTIC BEHAVIORMAJOR PROFESSOR: Dr. Jerzy KocikGraphically, a spin network is a trivalent graph with weights on each edge. At anyof the vertices, the sum of all three weights is even and the sum of any two weights isgreater than or equal to the remaining weight. If the spin network has no free ends, thenwe can evaluate the spin network. Here, we propose a method to evaluate some basic spinnetworks using the idea of Stirling triangle.Tangent circles with integer curvatures are a natural source to make a spin network.In particular, there are spin networks corresponding the Apollonian circle packing and theFord circle packing. We obtain the recurrence relations using the Descartes circle theoremand we evaluate the Apollonian spin network and the Ford circle spin network. We alsodiscuss the asymptotic behavior of the Ford circle spin network.
7

Sur les propriétés thermodynamiques et quantiques des trous noirs / On thermodynamic and quantum properties of black holes

Frodden, Ernesto 15 October 2013 (has links)
Les trous noirs sont étudiés d'un point de vue théorique. Les propriétés thermodynamiques et quantiques des trous noirs sont abordées à travers des nouvelles perspectives. On explore différents problèmes logiquement reliés: depuis les lois de la mécanique des trous noirs, en passant par la function partition Euclidienne des trous noirs, jusqu'aux modèles microscopiques quantiques et granulaires.L'approche repose sur deux principes: la thermodynamique importante pour les trous noirs se situe près de l'horizon et la géométrie quantique de l'espace-temps est granuleuse.On examine la première loi de la mécanique des trous noirs avec une perspective quasilocal basée sur des observateurs près de l'horizon. Il s'avère que la première loi peut être simplement reformulée comme la variation de l'aire de l'horizon. Ensuite, on examine la fonction de partition Euclidienne à partir de la nouvelle perspective quasilocal, et on reproduit l'entropie de Bekenstein-Hawking ainsi que l'energie quasilocal nouvellement introduite.L'approche quasilocal peut être abordée par un point de vue basé sur les Horizons Isolés. Dans ce cadre, on explore la quantification de l'Horizon Isolé rotatoire, en analysant la structure symplectique, et en utilisant l'espace de Hilbert de la Gravitation Quantique à Boucles.Finalement, on étudie les conséquences macroscopiques du modèle granulaire quantique basé sur la Gravitation Quantique à Boucles. L'accent est mis sur le modèle de trou noir en rotation, les résultats ne sont pas concluants du fait que plusieurs hypothèses doivent être posées. Cependant, la perspective est prometteuse. Certains des résultats, comme l'entropie, peuvent être reproduits. / Black holes are studied from a theoretical point of view. The thermodynamics and quantum properties are addressed from a new perspective. A range of logically connected problems are explored: Starting from the laws of black hole mechanics, going through the Euclidean partition function, to the microscopic quantum granular models.The approach is supported by two guiding principles: What is physically relevant for black hole thermodynamics lays close to the horizon and the quantum geometry of the spacetime is coarse-grained.The first law of black hole mechanics is reviewed from the new quasilocal perspective based on near horizon observers. It turns out that the first law can be reformulated as variations of the area of the horizon. On the same grounds, the semiclassical Euclidean partition function is reviewed from the new quasilocal perspective. The framework reproduces the classic Bekenstein-Hawking entropy and the newly introduced quasilocal energy.The quasilocal approach can also be addressed by using Isolated Horizons. The quantization procedures are explored for the rotating Isolated Horizon starting from a symplectic structure analysis, and using the Loop Quantum Gravity Hilbert space. Finally, through a statistical analysis, the macroscopic consequences of the quantum granular model based on the Loop Quantum Gravity approach are studied. Special emphasis is put on the rotating quantum black hole model, however the results are not conclusive as several assumptions should be made on the way. Nevertheless, the perspective is promising as some of the semiclassical results, for instance the entropy, can be reproduced.
8

Stringed along or caught in a loop? : Philosophical reflections on modern quantum gravity research

Matsubara, Keizo January 2013 (has links)
A number of philosophical questions, all connected to modern research in quantum gravity, are discussed in this dissertation. The goal of research in quantum gravity is to find a quantum theory for gravitation; the other fundamental forces are already understood in terms of quantum physics. Quantum gravity is studied within a number of different research programmes. The most popular are string theory and loop quantum gravity; besides these a number of other approaches are pursued. Due to the lack of empirical support, it is relevant to assess the scientific status of this research. This is done from four different points of view, namely the ones held by: logical positivists, Popper, Kuhn and Lakatos. It is then argued that research in quantum gravity may be considered scientific, conditional on scientists being open with the tentative and speculative nature of their pursuits. Given the lack of empirical progress, in all approaches to quantum gravity, a pluralistic strategy is advised. In string theory there are different theoretical formulations, or dualities, which are physically equivalent. This is relevant for the problem of underdetermination of theories by data, and the debate on scientific realism. Different views on the dualities are possible. It is argued that a more empiricist view on the semantics of theories, than what has been popular lately, ought to be adopted. This is of importance for our understanding of what the theories tell us about space and time. In physics and philosophy, the idea that there are worlds or universes other than our own, has appeared in different contexts. It is discussed how we should understand these different suggestions; how they are similar and how they are different. A discussion on, how and when theoretical multiverse scenarios can be empirically testable, is also given. The reliability of thought experiments in physics in general and in quantum gravity in particular is evaluated. Thought experiments can be important for heuristic purposes, but in the case of quantum gravity, conclusions based on thoght experiments are not very reliable.
9

Etude des perturbations cosmologiques et dérivation des observables en Gravité Quantique à Boucles / Study of cosmological perturbations and derivation of observables in Loop Quantum Gravity

Cailleteau, Thomas 06 September 2012 (has links)
La relativité générale est la théorie rendant compte de la gravitation via une déformation de l'espace-temps. Son application à l'Univers permet, dans le modèle Lambda-CDM, de bien rentre compte des observations cosmologiques. Cependant, à l'échelle de Planck, la théorie ne fonctionne plus et s'avère incohérente. Pour résoudre ce problème, il est sans doute essentiel de tenir compte des effets quantiques. Depuis près d'un siècle, concilier relativité générale et mécanique quantique est considéré comme une priorité de la physique théorique. La tâche s'avère néanmoins extraordinairement difficile et cette thèse est consacrée à l'une des pistes les plus sérieuses : la gravitation quantique à boucles. Pour aller de l'avant dans cette démarche nécessaire mais complexe, des confrontation avec des données expérimentales seraient essentielles. Nous nous sommes ainsi intéressés aux perturbations cosmologiques générées dans ce cadre. Nous avons étudié en détails les conséquences phénoménologiques des corrections de cosmologie quantique à boucles aux modes tensoriels dans un modèle d'univers en rebond. Une analyse de Fisher a été développée pour comparer ces prédictions aux éventuelles futures observations. Pour les autres modes, nous nous sommes placés dans un formalisme spécifique incluant le calcul de contre-termes permettant de prévenir l'apparition d'anomalies dans la structure de l'algèbre des contraintes. Ce formalisme a été appliqué aux cas des perturbations vectorielles puis scalaires. Les équations du mouvement invariantes de jauges permettant de calculer les spectres ont alors été dérivées. / General relativity describes gravity as a deformation of space-time. Applied to the Universe as a whole, it explains well cosmological observations in the lambda-CDM paradigm. However, at the Planck scale, the theory is not anymore self-consistent. It is most probably necessary to include quantum effects. For a century, this has been considered as one of the main challenges for theoretical physics. This is however an extremely difficult aim to reach and this thesis is devoted to one of the main proposal: Loop Quantum Gravity. To go ahead in the construction of any quantum theory of gravity, it would be most useful to compare predictions with observations. To this aim, we have studied cosmological perturbations in this framework. We have investigated into the details the phenomenological consequences of loop quantum cosmology corrections in a bouncing universe. A Fisher analysis was carried out to compare the predictions with future data. For the other modes, we have used a specific formalism to include counterterms that prevent anomalies from appearing in the algebra of constraints. This formalism was applied to vector and scalar perturbations. The gauge-invariant equations of motion leading to the calculation of measurable spectra were derived.
10

Corrections radiatives en gravité quantique à mousse de spins : Une étude du graphe de Self énergie dans le modèle EPRL Lorentzien / Radiative Corrections in Spinfoam Quantum Gravity

Riello, Aldo 22 July 2014 (has links)
Je propose la première étude quantitative des corrections radiatives du modèle EPRL en gravité quantique à mousse de spins. Ce modèle est la proposition la plus élaborée de gravité quantique Lorentzienne 4D dite 'indépendante du fond' ('background independent'). C'est une réalisation, par intégrale de chemin, de la quantification de la Relativité Générale comme somme sur les géométries. L'étude se focalise sur les propriétés et les aspects géométriques de l'analogue du graphe de self-énergie du modèle, connu comme le graphe 'melonique'. Je montre que les contributions dominantes à un tel graphe divergent beaucoup moins que celles de modèles similaires en théorie topologique des champs. De plus, je dérive en détails la dépendance des amplitudes aux données de bords, et montre que ce graphe n'induit pas une renormalisation de la fonction d'onde. Ceci est dû à des raisons reliées aux fondements du modèle. Cependant, il se trouve que l'amplitude se réduit à une telle renormalisation dans la limite de nombres quantiques élevés. Ensuite, je montre les conséquences de ces calculs sur une observable physique : la fonction à deux points de la métrique quantique. Ainsi, je montre comment l'insertion du graphe de self-énergie dans l'intérieur de la mousse de spins utilisée a des effets non-triviaux sur la fonction à deux points, modifiant ses contributions à l'ordre dominant. De façon intéressante, ces effets ne disparaissent pas dans la limite des nombres quantiques élevés. Enfin, je discute les conséquences de ces calculs pour le modèle lui-même, et je souligne et commente les traits généraux qui semblent commun à tout modèle de mousse de spins basé sur le schéma présenté ici. / I present the first quantitative study of radiative corrections within the EPRL model of quantum gravity. This model is the most advanced proposal of Lorentzian 4-dimensional background-independent quantum gravity. It is a realization of the path-integral quantization of general relativity as a sum over geometries. The present study focuses on the properties and geometrical features of the analogue of the self-energy graph within the model, often referred to as the "melon"-graph. Here, I show that the dominating contribution to such a graph is characterized by a degree of divergence much smaller than that of closely related topological quantum field theories. Moreover, I work out in detail the dependence of the amplitude from the boundary data, and find that the self-energy graph does not simply induce a wave function renormaliziation. This happens for reasons deeply related to the model foundations. However, it turns out that the amplitude reduces to a wave function renormalzation in the limit of large quantum numbers. Then, I show the consequences of this calculations on a concrete spinfoam observable: the quantum-metric two-point function. In doing this, I show how the insertion of the self-energy graph in the bulk of the (first-order) spinfoam used in the calculation, has non-trivial effects on the correlation function, modifying its leading order contributions. Most interestingly, this effects do not disappear in the limit of large quantum number. Finally, I discuss the consequences of these calculations for the model itself, and I point out and comment those general features which seem to be common to any spinfoam model based on the present model-building schemes.

Page generated in 0.099 seconds