Spelling suggestions: "subject:"lack stress"" "subject:"back stress""
1 |
Previsão de tensões residuais em juntas soldadas de painéis navais pelo método DPC.MENDES, Catarina Esposito 30 October 2015 (has links)
Submitted by Haroudo Xavier Filho (haroudo.xavierfo@ufpe.br) on 2016-05-03T16:32:45Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Dissertação Catarina.pdf: 11081467 bytes, checksum: 1930c1981b8aba0484b9c087e89fbea1 (MD5) / Made available in DSpace on 2016-05-03T16:32:45Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Dissertação Catarina.pdf: 11081467 bytes, checksum: 1930c1981b8aba0484b9c087e89fbea1 (MD5)
Previous issue date: 2015-10-30 / Programa de Recursos Humanos da Petrobrás / A soldagem é um processo mecânico que une partes de componentes mecânicos, mas ao mesmo tempo, pode causar transtornos na montagem e operação desses componentes. Uma das grandes preocupações do processo de soldagem, é a tensão residual. Esse trabalho busca correlacionar os valores de tensões residuais longitudinal e transversais, com a tensão de recuo, fruto do efeito anisotrópico presente em chapas laminadas. As tensões residuais foram calculadas através do método teórico-experimental de deslocamento de pontos coordenados (DPC) e comparadas com o método consagrado de DR-X. O material utilizado foi um aço estrutural naval ASTM A131 Grau AH-36, soldado pelo processo MAG no sentido da laminação e transversalmente a ela. Após o processo de soldagem, foram feitos furos sobre a zona termicamente afetada (ZTA) e o cordão de solda. Suas coordenadas foram mapeadas a partir de um furo de referência, em uma máquina de medição por coordenadas (MMC). Posteriormente, as chapas passaram por um processo de alívio de tensão, onde ocorreram deslocamentos (escoamento) dos pontos em questão. A partir desses deslocamentos, as tensões residuais foram calculadas através da Lei de Hooke. Foi visto que os valores das tensões residuais calculadas pelo método DPC estão dentro do limite de tolerância dos valores medidos pelo método DR-X. A partir do ensaio de tração foi encontrada a tensão de recuo do material. / Welding is a mechanical process which helps join together parts of components, whilst at the same time, causes great setbacks if not well specified. One of many worries of the welding process are residual stresses left on the material. This work intends to relate longwise and crosswise residual stresses values through back stress, a result of the anisotropic effect of welded rolled steel sheets. Residual stresses were calculated through the theoretic-experimental method of displacements of coordinated points (DCP) and compared with the well-known X-Ray method. The used material was a naval structure steel ASTM A131 grade AH-36, welded by MAG process, both by rolling direction and transverse to it. After the welding process, the sheets had some points drilled over the heat affected zone (HAZ) and the weld bead, which were later mapped from an origin reference point by a coordinate measurement machine (CMM). Then, the sheets were submitted to an annealing heat treatment in which the previously mapped points would be displaced (yielding). From these displacements, residual stresses were calculated by using Hooke’s Law. It was seen that residual stresses values calculated by DCP method are within range of values measured by DR-X method. From the tensile strength test, the material back stress was found.
|
2 |
Modeling and simulation of the micromechanical behavior of semi-crystalline polyethylene including the effect of interphase layer / Modélisation et simulation du comportement micromécanique du polyéthylène semi-cristallin : effet de l'interphaseGhazavizadeh, Akbar 13 December 2013 (has links)
Dans ce travail, la caractérisation mécanique de l’interphase entre les zones amorphes et cristallines dans le polyéthylène a été abordée. La caractérisation élastique est effectuée en appliquant deux approches micromécaniques à partir des données de la simulation moléculaire pour la zone interlamellaire. Ces approches micromécaniques sont d’une part le modèle étendu d’inclusion composite, et d’autre part la méthode de double inclusion. Les résultats des deux approches s’accordent parfaitement. Il a été mis en évidence que le tenseur de rigidité de l’interphase n’est pas défini positif, l’interphase est donc mécaniquement instable. La comparaison avec les résultats expérimentaux valide la méthodologie proposée. Pour la caractérisation hyperélastique, l’algorithme hybride proposé consiste à appliquer la loi de comportement d’un milieu continu isotrope, compressible et hyperélastique aux résultats de la simulation de la dynamique moléculaire d’un élément unitaire de polyéthylène. La notion d’optimisation d’un ensemble de fonctions coûts non négatives est l’idée clé de cette partie. Les paramètres hyperélastiques identifiés sont en bon accord avec ceux qui ont été estimés expérimentalement. L’évolution des frontières de l’interphase avec la déformation est le second résultat de cette analyse. La fin du travail est dédiée à la simulation numérique de la grande déformation viscoplastique d’un agrégat de polyéthylène. Le modèle de Gent adopté pour la contrainte de rappel, le tenseur de projection proposé pour l’approche modifiée de Taylor, et l’optimisation multiniveau font parties des contributions apportées. / Elastic characterization of the interphase layer in polyethylene is implemented by applying the relationships of two micromechanical approaches, “Extended Composite Inclusion Model” and “Double-Inclusion Method”, to the Monte Carlo molecular simulation data for the interlamellar domain. The results of the two approaches match perfectly. The interphase stiffness lacks the common feature of positive definiteness, which indicates its mechanical instability. Comparison with experimental results endorses the proposed methodology. For the hyperelastic characterization of the interlamellar domain and the interphase layer, the proposed hybrid algorithm consists in applying the constitutive equations of an isotropic, compressible, hyperelastic continuum to the molecular dynamics simulation results of a polyethylene stack. Evolution of the interphase boundaries are introduced as auxiliary variables and the notion of minimizing a set of nonnegative objective functions is employed for parameter identification. The identified hyperelastic parameters for the interlamellar domain arein good agreement with the ones that have been estimated experimentally. Finally, the large, viscoplastic deformation of an aggregate of polyethylene is reexamined. The Gent model adopted for the back stress of the noncrystalline phase, correcting the projection tensor for the modified Taylor approach, and the idea of multilevel optimization are among the contributions made.
|
Page generated in 0.038 seconds