• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation on uncertainty and sensitivity analysis of complex systems / Enquête sur l'incertitude et l'analyse de sensibilité des systèmes complexes

Zhu, Yueying 23 October 2017 (has links)
Par un développement en série de Taylor, une relation analytique générale est établie pour calculer l’incertitude de la réponse du modèle, en assumant l'indépendance des entrées. En utilisant des relations de puissances et exponentielles, il est démontré que l’approximation souvent utilisée permet d’évaluer de manière satisfaisante l’incertitude sur la réponse du modèle pourvu que l’incertitude d’entrée soit négligeable ou que le modèle soit presque linéaire. La méthode est appliquée à l’étude d’un réseau de distribution électrique et à un modèle d’ordre économique.La méthode est étendue aux cas où les variables d’entrée sont corrélées. Avec la méthode généralisée, on peux déterminer si les corrélations d'entrée doivent ou non être considérées pour des applications pratiques. Des exemples numériques montrent l'efficacité et la validation de notre méthode dans l'analyse des modèles tant généraux que spécifiques tels que le modèle déterministe du VIH. La méthode est ensuite comparée à celle de Sobol. Les résultats montrent que la méthode de Sobol peut surévaluer l’incidence des divers facteurs, mais sous-estimer ceux de leurs interactions dans le cas d’interactions non linéaires entre les paramètres d’entrée. Une modification est alors introduite, aidant à comprendre la différence entre notre méthode et celle de Sobol. Enfin, un modèle numérique est établi dans le cas d’un jeu virtuel prenant en compte la formation de la dynamique de l'opinion publique. L’analyse théorique à l’aide de la méthode de modification d'un paramètre à la fois. La méthode basée sur l'échantillonnage fournit une analyse globale de l'incertitude et de la sensibilité des observations. / By means of taylor series expansion, a general analytic formula is derived to characterise the uncertaintypropagation from input variables to the model response,in assuming input independence. By using power-lawand exponential functions, it is shown that the widelyused approximation considering only the first ordercontribution of input uncertainty is sufficiently good onlywhen the input uncertainty is negligible or the underlyingmodel is almost linear. This method is then applied to apower grid system and the eoq model.The method is also extended to correlated case. Withthe extended method, it is straightforward to identify theimportance of input correlations in the model response.This allows one to determine whether or not the inputcorrelations should be considered in practicalapplications. Numerical examples suggest theeffectiveness and validation of our method for generalmodels, as well as specific ones such as thedeterministic hiv model.The method is then compared to Sobol’s one which isimplemented with sampling based strategy. Resultsshow that, compared to our method, it may overvaluethe roles of individual input factors but underestimatethose of their interaction effects when there arenonlinear coupling terms of input factors. A modificationis then introduced, helping understand the differencebetween our method and Sobol’s one.Finally, a numerical model is designed based on avirtual gambling mechanism, regarding the formation ofopinion dynamics. Theoretical analysis is proposed bythe use of one-at-a-time method. Sampling-basedmethod provides a global analysis of output uncertaintyand sensitivity.
2

Modeling and simulation of the micromechanical behavior of semi-crystalline polyethylene including the effect of interphase layer / Modélisation et simulation du comportement micromécanique du polyéthylène semi-cristallin : effet de l'interphase

Ghazavizadeh, Akbar 13 December 2013 (has links)
Dans ce travail, la caractérisation mécanique de l’interphase entre les zones amorphes et cristallines dans le polyéthylène a été abordée. La caractérisation élastique est effectuée en appliquant deux approches micromécaniques à partir des données de la simulation moléculaire pour la zone interlamellaire. Ces approches micromécaniques sont d’une part le modèle étendu d’inclusion composite, et d’autre part la méthode de double inclusion. Les résultats des deux approches s’accordent parfaitement. Il a été mis en évidence que le tenseur de rigidité de l’interphase n’est pas défini positif, l’interphase est donc mécaniquement instable. La comparaison avec les résultats expérimentaux valide la méthodologie proposée. Pour la caractérisation hyperélastique, l’algorithme hybride proposé consiste à appliquer la loi de comportement d’un milieu continu isotrope, compressible et hyperélastique aux résultats de la simulation de la dynamique moléculaire d’un élément unitaire de polyéthylène. La notion d’optimisation d’un ensemble de fonctions coûts non négatives est l’idée clé de cette partie. Les paramètres hyperélastiques identifiés sont en bon accord avec ceux qui ont été estimés expérimentalement. L’évolution des frontières de l’interphase avec la déformation est le second résultat de cette analyse. La fin du travail est dédiée à la simulation numérique de la grande déformation viscoplastique d’un agrégat de polyéthylène. Le modèle de Gent adopté pour la contrainte de rappel, le tenseur de projection proposé pour l’approche modifiée de Taylor, et l’optimisation multiniveau font parties des contributions apportées. / Elastic characterization of the interphase layer in polyethylene is implemented by applying the relationships of two micromechanical approaches, “Extended Composite Inclusion Model” and “Double-Inclusion Method”, to the Monte Carlo molecular simulation data for the interlamellar domain. The results of the two approaches match perfectly. The interphase stiffness lacks the common feature of positive definiteness, which indicates its mechanical instability. Comparison with experimental results endorses the proposed methodology. For the hyperelastic characterization of the interlamellar domain and the interphase layer, the proposed hybrid algorithm consists in applying the constitutive equations of an isotropic, compressible, hyperelastic continuum to the molecular dynamics simulation results of a polyethylene stack. Evolution of the interphase boundaries are introduced as auxiliary variables and the notion of minimizing a set of nonnegative objective functions is employed for parameter identification. The identified hyperelastic parameters for the interlamellar domain arein good agreement with the ones that have been estimated experimentally. Finally, the large, viscoplastic deformation of an aggregate of polyethylene is reexamined. The Gent model adopted for the back stress of the noncrystalline phase, correcting the projection tensor for the modified Taylor approach, and the idea of multilevel optimization are among the contributions made.
3

Développement de modèles prédictifs de la toxicocinétique de substances organiques

Peyret, Thomas 02 1900 (has links)
Les modèles pharmacocinétiques à base physiologique (PBPK) permettent de simuler la dose interne de substances chimiques sur la base de paramètres spécifiques à l’espèce et à la substance. Les modèles de relation quantitative structure-propriété (QSPR) existants permettent d’estimer les paramètres spécifiques au produit (coefficients de partage (PC) et constantes de métabolisme) mais leur domaine d’application est limité par leur manque de considération de la variabilité de leurs paramètres d’entrée ainsi que par leur domaine d’application restreint (c. à d., substances contenant CH3, CH2, CH, C, C=C, H, Cl, F, Br, cycle benzénique et H sur le cycle benzénique). L’objectif de cette étude est de développer de nouvelles connaissances et des outils afin d’élargir le domaine d’application des modèles QSPR-PBPK pour prédire la toxicocinétique de substances organiques inhalées chez l’humain. D’abord, un algorithme mécaniste unifié a été développé à partir de modèles existants pour prédire les PC de 142 médicaments et polluants environnementaux aux niveaux macro (tissu et sang) et micro (cellule et fluides biologiques) à partir de la composition du tissu et du sang et de propriétés physicochimiques. L’algorithme résultant a été appliqué pour prédire les PC tissu:sang, tissu:plasma et tissu:air du muscle (n = 174), du foie (n = 139) et du tissu adipeux (n = 141) du rat pour des médicaments acides, basiques et neutres ainsi que pour des cétones, esters d’acétate, éthers, alcools, hydrocarbures aliphatiques et aromatiques. Un modèle de relation quantitative propriété-propriété (QPPR) a été développé pour la clairance intrinsèque (CLint) in vivo (calculée comme le ratio du Vmax (μmol/h/kg poids de rat) sur le Km (μM)), de substrats du CYP2E1 (n = 26) en fonction du PC n octanol:eau, du PC sang:eau et du potentiel d’ionisation). Les prédictions du QPPR, représentées par les limites inférieures et supérieures de l’intervalle de confiance à 95% à la moyenne, furent ensuite intégrées dans un modèle PBPK humain. Subséquemment, l’algorithme de PC et le QPPR pour la CLint furent intégrés avec des modèles QSPR pour les PC hémoglobine:eau et huile:air pour simuler la pharmacocinétique et la dosimétrie cellulaire d’inhalation de composés organiques volatiles (COV) (benzène, 1,2-dichloroéthane, dichlorométhane, m-xylène, toluène, styrène, 1,1,1 trichloroéthane et 1,2,4 trimethylbenzène) avec un modèle PBPK chez le rat. Finalement, la variabilité de paramètres de composition des tissus et du sang de l’algorithme pour les PC tissu:air chez le rat et sang:air chez l’humain a été caractérisée par des simulations Monte Carlo par chaîne de Markov (MCMC). Les distributions résultantes ont été utilisées pour conduire des simulations Monte Carlo pour prédire des PC tissu:sang et sang:air. Les distributions de PC, avec celles des paramètres physiologiques et du contenu en cytochrome P450 CYP2E1, ont été incorporées dans un modèle PBPK pour caractériser la variabilité de la toxicocinétique sanguine de quatre COV (benzène, chloroforme, styrène et trichloroéthylène) par simulation Monte Carlo. Globalement, les approches quantitatives mises en œuvre pour les PC et la CLint dans cette étude ont permis l’utilisation de descripteurs moléculaires génériques plutôt que de fragments moléculaires spécifiques pour prédire la pharmacocinétique de substances organiques chez l’humain. La présente étude a, pour la première fois, caractérisé la variabilité des paramètres biologiques des algorithmes de PC pour étendre l’aptitude des modèles PBPK à prédire les distributions, pour la population, de doses internes de substances organiques avant de faire des tests chez l’animal ou l’humain. / Physiologically-based pharmacokinetic (PBPK) models simulate the internal dose metrics of chemicals based on species-specific and chemical-specific parameters. The existing quantitative structure-property relationships (QSPRs) allow to estimate the chemical-specific parameters (partition coefficients (PCs) and metabolic constants) but their applicability is limited by their lack of consideration of variability in input parameters and their restricted application domain (i.e., substances containing CH3, CH2, CH, C, C=C, H, Cl, F, Br, benzene ring and H in benzene ring). The objective of this study was to develop new knowledge and tools to increase the applicability domain of QSPR-PBPK models for predicting the inhalation toxicokinetics of organic compounds in humans. First, a unified mechanistic algorithm was developed from existing models to predict macro (tissue and blood) and micro (cell and biological fluid) level PCs of 142 drugs and environmental pollutants on the basis of tissue and blood composition along with physicochemical properties. The resulting algorithm was applied to compute the tissue:blood, tissue:plasma and tissue:air PCs in rat muscle (n = 174), liver (n = 139) and adipose tissue (n = 141) for acidic, neutral, zwitterionic and basic drugs as well as ketones, acetate esters, alcohols, ethers, aliphatic and aromatic hydrocarbons. Then, a quantitative property-property relationship (QPPR) model was developed for the in vivo rat intrinsic clearance (CLint) (calculated as the ratio of the in vivo Vmax (μmol/h/kg bw rat) to the Km (μM)) of CYP2E1 substrates (n = 26) as a function of n-octanol:water PC, blood:water PC, and ionization potential). The predictions of the QPPR as lower and upper bounds of the 95% mean confidence intervals were then integrated within a human PBPK model. Subsequently, the PC algorithm and QPPR for CLint were integrated along with a QSPR model for the hemoglobin:water and oil:air PCs to simulate the inhalation pharmacokinetics and cellular dosimetry of volatile organic compounds (VOCs) (benzene, 1,2-dichloroethane, dichloromethane, m-xylene, toluene, styrene, 1,1,1-trichloroethane and 1,2,4 trimethylbenzene) using a PBPK model for rats. Finally, the variability in the tissue and blood composition parameters of the PC algorithm for rat tissue:air and human blood:air PCs was characterized by performing Markov chain Monte Carlo (MCMC) simulations. The resulting distributions were used for conducting Monte Carlo simulations to predict tissue:blood and blood:air PCs for VOCs. The distributions of PCs, along with distributions of physiological parameters and CYP2E1 content, were then incorporated within a PBPK model, to characterize the human variability of the blood toxicokinetics of four VOCs (benzene, chloroform, styrene and trichloroethylene) using Monte Carlo simulations. Overall, the quantitative approaches for PCs and CLint implemented in this study allow the use of generic molecular descriptors rather than specific molecular fragments to predict the pharmacokinetics of organic substances in humans. In this process, the current study has, for the first time, characterized the variability of the biological input parameters of the PC algorithms to expand the ability of PBPK models to predict the population distributions of the internal dose metrics of organic substances prior to testing in animals or humans.
4

Développement de modèles prédictifs de la toxicocinétique de substances organiques

Peyret, Thomas 02 1900 (has links)
Les modèles pharmacocinétiques à base physiologique (PBPK) permettent de simuler la dose interne de substances chimiques sur la base de paramètres spécifiques à l’espèce et à la substance. Les modèles de relation quantitative structure-propriété (QSPR) existants permettent d’estimer les paramètres spécifiques au produit (coefficients de partage (PC) et constantes de métabolisme) mais leur domaine d’application est limité par leur manque de considération de la variabilité de leurs paramètres d’entrée ainsi que par leur domaine d’application restreint (c. à d., substances contenant CH3, CH2, CH, C, C=C, H, Cl, F, Br, cycle benzénique et H sur le cycle benzénique). L’objectif de cette étude est de développer de nouvelles connaissances et des outils afin d’élargir le domaine d’application des modèles QSPR-PBPK pour prédire la toxicocinétique de substances organiques inhalées chez l’humain. D’abord, un algorithme mécaniste unifié a été développé à partir de modèles existants pour prédire les PC de 142 médicaments et polluants environnementaux aux niveaux macro (tissu et sang) et micro (cellule et fluides biologiques) à partir de la composition du tissu et du sang et de propriétés physicochimiques. L’algorithme résultant a été appliqué pour prédire les PC tissu:sang, tissu:plasma et tissu:air du muscle (n = 174), du foie (n = 139) et du tissu adipeux (n = 141) du rat pour des médicaments acides, basiques et neutres ainsi que pour des cétones, esters d’acétate, éthers, alcools, hydrocarbures aliphatiques et aromatiques. Un modèle de relation quantitative propriété-propriété (QPPR) a été développé pour la clairance intrinsèque (CLint) in vivo (calculée comme le ratio du Vmax (μmol/h/kg poids de rat) sur le Km (μM)), de substrats du CYP2E1 (n = 26) en fonction du PC n octanol:eau, du PC sang:eau et du potentiel d’ionisation). Les prédictions du QPPR, représentées par les limites inférieures et supérieures de l’intervalle de confiance à 95% à la moyenne, furent ensuite intégrées dans un modèle PBPK humain. Subséquemment, l’algorithme de PC et le QPPR pour la CLint furent intégrés avec des modèles QSPR pour les PC hémoglobine:eau et huile:air pour simuler la pharmacocinétique et la dosimétrie cellulaire d’inhalation de composés organiques volatiles (COV) (benzène, 1,2-dichloroéthane, dichlorométhane, m-xylène, toluène, styrène, 1,1,1 trichloroéthane et 1,2,4 trimethylbenzène) avec un modèle PBPK chez le rat. Finalement, la variabilité de paramètres de composition des tissus et du sang de l’algorithme pour les PC tissu:air chez le rat et sang:air chez l’humain a été caractérisée par des simulations Monte Carlo par chaîne de Markov (MCMC). Les distributions résultantes ont été utilisées pour conduire des simulations Monte Carlo pour prédire des PC tissu:sang et sang:air. Les distributions de PC, avec celles des paramètres physiologiques et du contenu en cytochrome P450 CYP2E1, ont été incorporées dans un modèle PBPK pour caractériser la variabilité de la toxicocinétique sanguine de quatre COV (benzène, chloroforme, styrène et trichloroéthylène) par simulation Monte Carlo. Globalement, les approches quantitatives mises en œuvre pour les PC et la CLint dans cette étude ont permis l’utilisation de descripteurs moléculaires génériques plutôt que de fragments moléculaires spécifiques pour prédire la pharmacocinétique de substances organiques chez l’humain. La présente étude a, pour la première fois, caractérisé la variabilité des paramètres biologiques des algorithmes de PC pour étendre l’aptitude des modèles PBPK à prédire les distributions, pour la population, de doses internes de substances organiques avant de faire des tests chez l’animal ou l’humain. / Physiologically-based pharmacokinetic (PBPK) models simulate the internal dose metrics of chemicals based on species-specific and chemical-specific parameters. The existing quantitative structure-property relationships (QSPRs) allow to estimate the chemical-specific parameters (partition coefficients (PCs) and metabolic constants) but their applicability is limited by their lack of consideration of variability in input parameters and their restricted application domain (i.e., substances containing CH3, CH2, CH, C, C=C, H, Cl, F, Br, benzene ring and H in benzene ring). The objective of this study was to develop new knowledge and tools to increase the applicability domain of QSPR-PBPK models for predicting the inhalation toxicokinetics of organic compounds in humans. First, a unified mechanistic algorithm was developed from existing models to predict macro (tissue and blood) and micro (cell and biological fluid) level PCs of 142 drugs and environmental pollutants on the basis of tissue and blood composition along with physicochemical properties. The resulting algorithm was applied to compute the tissue:blood, tissue:plasma and tissue:air PCs in rat muscle (n = 174), liver (n = 139) and adipose tissue (n = 141) for acidic, neutral, zwitterionic and basic drugs as well as ketones, acetate esters, alcohols, ethers, aliphatic and aromatic hydrocarbons. Then, a quantitative property-property relationship (QPPR) model was developed for the in vivo rat intrinsic clearance (CLint) (calculated as the ratio of the in vivo Vmax (μmol/h/kg bw rat) to the Km (μM)) of CYP2E1 substrates (n = 26) as a function of n-octanol:water PC, blood:water PC, and ionization potential). The predictions of the QPPR as lower and upper bounds of the 95% mean confidence intervals were then integrated within a human PBPK model. Subsequently, the PC algorithm and QPPR for CLint were integrated along with a QSPR model for the hemoglobin:water and oil:air PCs to simulate the inhalation pharmacokinetics and cellular dosimetry of volatile organic compounds (VOCs) (benzene, 1,2-dichloroethane, dichloromethane, m-xylene, toluene, styrene, 1,1,1-trichloroethane and 1,2,4 trimethylbenzene) using a PBPK model for rats. Finally, the variability in the tissue and blood composition parameters of the PC algorithm for rat tissue:air and human blood:air PCs was characterized by performing Markov chain Monte Carlo (MCMC) simulations. The resulting distributions were used for conducting Monte Carlo simulations to predict tissue:blood and blood:air PCs for VOCs. The distributions of PCs, along with distributions of physiological parameters and CYP2E1 content, were then incorporated within a PBPK model, to characterize the human variability of the blood toxicokinetics of four VOCs (benzene, chloroform, styrene and trichloroethylene) using Monte Carlo simulations. Overall, the quantitative approaches for PCs and CLint implemented in this study allow the use of generic molecular descriptors rather than specific molecular fragments to predict the pharmacokinetics of organic substances in humans. In this process, the current study has, for the first time, characterized the variability of the biological input parameters of the PC algorithms to expand the ability of PBPK models to predict the population distributions of the internal dose metrics of organic substances prior to testing in animals or humans.
5

GPU-enhanced power flow analysis / Calcul de Flux de Puissance amélioré grâce aux Processeurs Graphiques

Marin, Manuel 11 December 2015 (has links)
Cette thèse propose un large éventail d'approches afin d'améliorer différents aspects de l'analyse des flux de puissance avec comme fils conducteur l'utilisation du processeurs graphiques (GPU). Si les GPU ont rapidement prouvés leurs efficacités sur des applications régulières pour lesquelles le parallélisme de données était facilement exploitable, il en est tout autrement pour les applications dites irrégulières. Ceci est précisément le cas de la plupart des algorithmes d'analyse de flux de puissance. Pour ce travail, nous nous inscrivons dans cette problématique d'optimisation de l'analyse de flux de puissance à l'aide de coprocesseur de type GPU. L'intérêt est double. Il étend le domaine d'application des GPU à une nouvelle classe de problème et/ou d'algorithme en proposant des solutions originales. Il permet aussi à l'analyse des flux de puissance de rester pertinent dans un contexte de changements continus dans les systèmes énergétiques, et ainsi d'en faciliter leur évolution. Nos principales contributions liées à la programmation sur GPU sont: (i) l'analyse des différentes méthodes de parcours d'arbre pour apporter une réponse au problème de la régularité par rapport à l'équilibrage de charge ; (ii) l'analyse de l'impact du format de représentation sur la performance des implémentations d'arithmétique floue. Nos contributions à l'analyse des flux de puissance sont les suivantes: (ii) une nouvelle méthode pour l'évaluation de l'incertitude dans l'analyse des flux de puissance ; (ii) une nouvelle méthode de point fixe pour l'analyse des flux de puissance, problème que l'on qualifie d'intrinsèquement parallèle. / This thesis addresses the utilization of Graphics Processing Units (GPUs) for improving the Power Flow (PF) analysis of modern power systems. Currently, GPUs are challenged by applications exhibiting an irregular computational pattern, as is the case of most known methods for PF analysis. At the same time, the PF analysis needs to be improved in order to cope with new requirements of efficiency and accuracy coming from the Smart Grid concept. The relevance of GPU-enhanced PF analysis is twofold. On one hand, it expands the application domain of GPU to a new class of problems. On the other hand, it consistently increases the computational capacity available for power system operation and design. The present work attempts to achieve that in two complementary ways: (i) by developing novel GPU programming strategies for available PF algorithms, and (ii) by proposing novel PF analysis methods that can exploit the numerous features present in GPU architectures. Specific contributions on GPU computing include: (i) a comparison of two programming paradigms, namely regularity and load-balancing, for implementing the so-called treefix operations; (ii) a study of the impact of the representation format over performance and accuracy, for fuzzy interval algebraic operations; and (iii) the utilization of architecture-specific design, as a novel strategy to improve performance scalability of applications. Contributions on PF analysis include: (i) the design and evaluation of a novel method for the uncertainty assessment, based on the fuzzy interval approach; and (ii) the development of an intrinsically parallel method for PF analysis, which is not affected by the Amdahl's law.

Page generated in 0.0461 seconds