Spelling suggestions: "subject:"free traversal"" "subject:"free transversals""
1 |
Towards More Scalable and Practical Program SynthesisYanjun Wang (12240227) 29 April 2022 (has links)
<p>Program synthesis aims to generate programs automatically from user-provided specifications and has the potential to aid users in real-world programming tasks from different domains. Although there have been great achievements of synthesis techniques in specific domains such as spreadsheet programming, computer-aided education and software engineering, there still exist huge barriers that keep us from achieving scalable and practical synthesis tools.</p>
<p><br></p>
<p>This dissertation presents several techniques towards more scalable and practical program synthesis from three perspectives: 1) intention: Writing formal specification for synthesis is a major barrier for average programmers. In particular, in some quantitative synthesis scenarios (such as network design), the first challenge faced by users is expressing their optimization targets. To address this problem, we present comparative synthesis, an interactive synthesis framework that learns near optimal programs through comparative queries, without explicitly specified optimization targets. 2) invention: Synthesis algorithms are key to pushing the performance limit of program synthesis. Aiming to solve syntax-guided synthesis problems efficiently, we introduce a cooperative synthesis technique that combines the merits of enumerative and deductive synthesis. 3) adaptation: Besides functional correctness, quality of generated code is another important aspect. Towards automated provably-correct optimization over tree traversals, we propose a stack-based representation for iterations in tree traversals and an encoding to Monadic Second-Order logic over trees, which enables reasoning about tree traversal transformations which were not possible before.</p>
|
2 |
GPU-enhanced power flow analysis / Calcul de Flux de Puissance amélioré grâce aux Processeurs GraphiquesMarin, Manuel 11 December 2015 (has links)
Cette thèse propose un large éventail d'approches afin d'améliorer différents aspects de l'analyse des flux de puissance avec comme fils conducteur l'utilisation du processeurs graphiques (GPU). Si les GPU ont rapidement prouvés leurs efficacités sur des applications régulières pour lesquelles le parallélisme de données était facilement exploitable, il en est tout autrement pour les applications dites irrégulières. Ceci est précisément le cas de la plupart des algorithmes d'analyse de flux de puissance. Pour ce travail, nous nous inscrivons dans cette problématique d'optimisation de l'analyse de flux de puissance à l'aide de coprocesseur de type GPU. L'intérêt est double. Il étend le domaine d'application des GPU à une nouvelle classe de problème et/ou d'algorithme en proposant des solutions originales. Il permet aussi à l'analyse des flux de puissance de rester pertinent dans un contexte de changements continus dans les systèmes énergétiques, et ainsi d'en faciliter leur évolution. Nos principales contributions liées à la programmation sur GPU sont: (i) l'analyse des différentes méthodes de parcours d'arbre pour apporter une réponse au problème de la régularité par rapport à l'équilibrage de charge ; (ii) l'analyse de l'impact du format de représentation sur la performance des implémentations d'arithmétique floue. Nos contributions à l'analyse des flux de puissance sont les suivantes: (ii) une nouvelle méthode pour l'évaluation de l'incertitude dans l'analyse des flux de puissance ; (ii) une nouvelle méthode de point fixe pour l'analyse des flux de puissance, problème que l'on qualifie d'intrinsèquement parallèle. / This thesis addresses the utilization of Graphics Processing Units (GPUs) for improving the Power Flow (PF) analysis of modern power systems. Currently, GPUs are challenged by applications exhibiting an irregular computational pattern, as is the case of most known methods for PF analysis. At the same time, the PF analysis needs to be improved in order to cope with new requirements of efficiency and accuracy coming from the Smart Grid concept. The relevance of GPU-enhanced PF analysis is twofold. On one hand, it expands the application domain of GPU to a new class of problems. On the other hand, it consistently increases the computational capacity available for power system operation and design. The present work attempts to achieve that in two complementary ways: (i) by developing novel GPU programming strategies for available PF algorithms, and (ii) by proposing novel PF analysis methods that can exploit the numerous features present in GPU architectures. Specific contributions on GPU computing include: (i) a comparison of two programming paradigms, namely regularity and load-balancing, for implementing the so-called treefix operations; (ii) a study of the impact of the representation format over performance and accuracy, for fuzzy interval algebraic operations; and (iii) the utilization of architecture-specific design, as a novel strategy to improve performance scalability of applications. Contributions on PF analysis include: (i) the design and evaluation of a novel method for the uncertainty assessment, based on the fuzzy interval approach; and (ii) the development of an intrinsically parallel method for PF analysis, which is not affected by the Amdahl's law.
|
Page generated in 0.0784 seconds