• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude du mécanisme de croissance du filament bactérien

Paradis, Guillaume 07 May 2018 (has links)
Plusieurs types de bactéries peuvent se déplacer dans leur milieu à l’aide de flagelles rotatifs. Ces flagelles sont composés d’un moteur rotatif ainsi que d’un filament long qui peut atteindre plusieurs fois la longueur du corps (10-15 μm) à l’extérieur de la cellule. Ceux-ci sont composés d’un assemblage de plusieurs milliers de protéines identiques appelées flagelline (FliC). Chaque filament croît par auto-assemblage des unités de FliC à son extrémité extérieure. Chaque FliC doit donc être transportée, partiellement dépliées dans un mince canal à l’intérieur du filament. Au bout du filament se trouve une structure, nommée le cap, composée de 5 protéines FliD essentielles à la polymérisation de la flagelline. Le travail réalisé au cours de cette thèse porte sur deux aspects particuliers de l’assemblage d’un filament. Premièrement, un filament peutil continuer à s’assembler s’il est cassé ? Deuxièmement, quel est le taux de croissance d’un filament et est-ce que ce taux varie avec la longueur du filament ? En utilisant des impulsions laser ultrabrèves, nous avons coupé des filaments marqués d’un fluorophore pour observer s’ils continuaient à s’assembler. Suivant une période de croissance de 2 heures, les filaments étaient marqués de fluorophores différents et observées sous un microscope en épifluorescence. Une souche de Salmonella enterica génétiquement modifiée pour n’exprimer en moyenne qu’un seul filament par cellule a été utilisée. Cette modification assure que chaque filament revisité a bien été coupé auparavant. La même expérience fut aussi réalisée à l’aide d’une souche surexprimant la protéine FliD. En tout, 82 filaments bactériens furent ainsi coupés, puis observés après une période de croissance et aucune reprise de croissance ne fut observée. Ces résultats peuvent sembler surprenants à la lumière de récentes études qui ont rapporté que les filaments continuent de s’assembler lorsqu’ils sont cassés mécaniquement par des forces de cisaillement (”shearing”). En utilisant des marquages de couleurs différentes, nous avons aussi mesurer le taux de croissance du filament en fonction de sa longueur. Nos résultats démontrent que le taux de croissance diminue graduellement avec la longueur, allant de ∼ 4μm/h à 1μm jusqu’à ∼ 1μm/h à 10 μm. Ces résultats contrastent avec le taux constant de 2.3m/3h rapporté récemment dans la littérature. Les expériences décritent dans cette thèse ont donc permis d’élaborer un modèle novateur décrivant le mécanisme de croissance du filament bactérien combinant la simple diffusion avec un mécanisme actif qui introduit les flagellines à la base du filament. / Many types of bacteria swim using a rotary motor. These remarkable biological motors are composed of a stator, a rotor and a bacterial flagellar filament which extends many body lengths (10-15μm) outside of the cell. The filaments are constructed of as many as 20000- 30000 protein subunits (called flagellin). Each filament grows at its distal end by self-assembly of flagellin subunits that have to be exported in an unfolded conformation through the narrow channel inside the filament. At the very end of the filament, a “cap” structure made of the FliD protein is essential for flagellin self-assembly and polymerization. The work performed in this doctoral thesis focuses on two specific aspects of the filament assembly. First, we ask whether the filament can continue to grow after being cut? Secondly, the rate of growth is measured as a function of the filament’s length. Using femtosecond laser ablation, we cut individual bacterial filaments and observed whether they could regrow. Bacterial filaments were first labeled with an orange fluorophore, cut with the laser, and then re-labeled with a green fluorophore after a 2h regrowth period. The experiments were performed with a genetically modified Salmonella enterica strain that grows only one filament per cell. This modification allows us to make sure that we revisit (after the regrowth period) the exact individual filaments that were cut by the laser. The same experiment was also performed with a strain where the cap protein FliD could be overexpressed. Overall, 82 filaments were cut and we did not observe any regrowth. Interestingly, this conclusion differs from results reported recently using mechanically broken (sheared) Escherichia coli filaments. Using a similar approach (sequential labeling of filaments with different colors) we also investigated the rate at which bacterial filaments grow as a function of their initial length. Our results lead us to the conclusion that the growth rate decreases with length (from ∼ 4μm/h at 1μm down to ∼ 1μm/h at 10μm). These observations again contrast with the constant growth rate (2.3 μm/3h) reported in a recent study. Those two separate results helped in the developement of a new model for the mechanism behind the bacterial flagellar growth combining simple diffusion with an active mecanism feeding the flagellin proteins at the base of the filament.
2

Contribution to the demonstration of the proof of the concept of the technological feasibility of using electro-activated whey as an ingredient and source of lactulose in the production of fermented dairy products

Aidarbekova, Sabina 07 May 2022 (has links)
Le lactosérum est un coproduit de l'industrie de fabrication du fromage et de la caséine et se caractérise par une forte demande chimique et biologique en oxygène. Les énormes quantités de lactosérum générées dans le monde, sa composition particulière et son utilisation limitée dans l'industrie alimentaire rendent nécessaire la recherche d'autres moyens d'ajouter de la valeur à cet ingrédient en vue d'augmenter la rentabilité de la transformation du lait. Dans ce contexte, la technologie de l'électro-activation (EA) offre la possibilité de valoriser le lactosérum par la conversion in situ d'une partie du lactose en lactulose, un prébiotique bien connu et éprouvé. De plus, l'EA cathodique du lactosérum a montré une formation des bases de Schiff suite à la glycation avec différents sucres des protéines, des peptides et des acides aminés libres dans le processus d'électro-isomérisation du lactose en lactulose. Ces produits sont connus pour leur forte activité antioxydante. Ainsi, l'EA ouvre une possibilité de générer un ingrédient fonctionnel avec une valeur ajoutée significative. Dans ce contexte, l'objectif principal de ce projet de doctorat était d'étudier et de démontrer la faisabilité technologique de l'utilisation du lactosérum électro-activé comme ingrédient fonctionnel à haut potentiel prébiotique dans la production de différents produits laitiers fermentés. La première étape de ce projet a été l'évaluation du comportement du lactosérum électro-activé dans la matrice de gel de lait fermenté. Une comparaison entre le pourcentage de matière grasse du lait, l'inoculum de lactosérum et le type de lactosérum a été effectuée. À cette fin, des échantillons de lait fermenté ont été préparés avec un ajout de 3, 6 et 9 % de lactosérum des deux types (électro-activé et non électro-activé). Il a été constaté que le lactosérum électro-activé prolongeait le temps d'obtention d'un pH de 4,6 en fonction de la quantité ajoutée. Ceci a été attribué à la capacité tampon plus élevée du lactosérum électroactivé; les résultats de l'acidité titrable ayant démontré des niveaux élevés de groupes acides libres. La microstructure du gel obtenu avec l'ajout du lactosérum électro-activé a montré une structure uniforme et moins poreuse, ce qui était en accord avec les résultats de la réduction de la synérèse. Pour confirmer ces résultats, un autre produit laitier fermenté avec un ajout de lactosérum électro-activé a été également développé. Le kéfir enrichi de lactosérum électro-activé présentait également une phase de fermentation prolongée. Les particules de lactosérum EA ont été incorporées de manière homogène dans la matrice du gel de kéfir. Par conséquent, aucune synérèse n'était visible dans les échantillons de kéfir additionnés de lactosérum EA à 9 %. De plus, les deux produits contenaient des niveaux élevés d'acides organiques (lactique, citrique, acétique, propionique et butyrique) lorsqu'ils étaient supplémentés avec du lactosérum EA. La production d'acide butyrique a été induite par l'ajout de lactosérum des deux types. L'analyse HPLC a révélé qu'environ 75-85% des niveaux initiaux de lactulose ont été conservés dans les produits avec du lactosérum EA après le processus de fermentation, ce qui démontre que la consommation de tels produits pourrait constituer une source de lactulose pour le consommateur. La deuxième étape de cette recherche a été d'optimiser l'utilisation du lactosérum électro-activé en tant qu'ingrédient par son incorporation dans le produit qui convient à sa couleur et aux caractéristiques de la réaction de Maillard et des conjugués entre les matières azotées avec les sucres. Le lait fermenté cuit, Ryazhenka, a été testé comme une matrice alimentaire appropriée pour véhiculer le lactosérum EA enrichi en lactulose. L'extension du temps de fermentation a été moins importante pour ce produit. Ainsi, le Ryazhenka additionné de lactosérum à 9% a atteint un pH de 4,6 après 4 h de fermentation. Le produit additionné de lactosérum EA (9%) a atteint ce niveau après 6,5 h. De plus, le lactosérum EA a amélioré la capacité antioxydante de Ryazhenka. Au cours de cette étape, nous avons démontré par des tests in vitro que l'électro-activation du lactosérum peut diminuer l'allergénicité de la β-lactoglobuline de 19,52 mg/kg à 7,56 mg/kg, qui s'est stabilisée à 12,13 mg/kg après neutralisation. Comme le protocole de production de Ryazhenka comprend une étape de cuisson de 3 à 5 h à 97-100°C, on considère qu'il présente des taux d'allergénicité plus faibles en raison des changements de conformation des protéines induits par la chaleur. Ainsi, l'ajout de lactosérum électro-activé ne contribue pas à l'augmentation de l'allergénicité de ce produit. Le troisième objectif de cette étude était de démontrer un potentiel prébiotique du lactosérum électro-activé en cultivant des bactéries probiotiques Lactobacillus rhamnosus subsp, Lactobacillus rhamnosus GG et Lactobacillus acidophilus ATCC4356. La densité optique(OD₆₀₀), le dénombrement sur plaques de Petri, la stabilité durant l'entreposage à 4 °C et la tolérance aux acides et à la bile des bactéries cultivées pendant 24 heures dans du lactosérum électro-activé ont été étudiés et comparés aux résultats obtenus par la culture sur du lactosérum, du lactosérum additionné de lactulose, du MRS et du MRS avec ajout de lactulose. Les valeurs OD₆₀₀ les plus élevées (>2) ont été obtenues dans les biomasses de lactosérum EA pour toutes ces bactéries. Cependant, les numérations sur plaque de Petri n'ont pas confirmé un nombre plus élevé de cellules bactériennes dans du lactosérum électro-activé. On peut donc conclure que le lactosérum électro-activé a probablement stimulé un métabolisme distinct chez les bactéries testées, ce qui est conforme à la définition des prébiotiques qui ont la particularité d'induire une stimulation de la croissance et/ou de l'activité des bactéries probiotiques afin de conférer des avantages pour la santé. En résumé, cette recherche a validé la faisabilité technologique de l'utilisation du lactosérum électro-activé comme ingrédient dans la production de lait fermenté et source de lactulose qui reste stable durant l'entreposage pendant 14 jours à 4 °C. Également, ce projet a montré que le lactosérum électro-activé est un ingrédient fonctionnel prometteur pour une éventuelle utilisation potentielle comme additif alimentaire fonctionnel et prébiotique dans l'industrie laitière. De plus, il peut être utilisé comme agent protecteur pour améliorer la viabilité et l'activité des probiotiques.
3

Méthodes spectroscopiques et optiques pour le suivi de la croissance des biofilms en milieu microfluidique

Paquet-Mercier, François 04 June 2018 (has links)
Les biofilms sont largement répandus dans la plupart des écosystèmes terrestres. Ils peuvent être formés par la plupart des microorganismes. Dans le cadre de cette thèse, les biofilms bactériens, plus spécifiquement ceux formés par la bactérie Pseudomonas sp. CT07, ont été étudiés. Ils ont plusieurs rôles, utiles ou nuisibles, pour la santé humaine, l’agriculture et l’industrie. Contrairement aux bactéries planctoniques qui peuvent nager librement, les bactéries sessiles s’attachent aux surfaces où elles peuvent former des biofilms. Pendant ce processus, elles produisent une matrice extracellulaire faite de, mais pas exclusivement, polysaccharides, de protéines, d’ADN et d’ARN. Les propriétés mécaniques de la matrice rendent le biofilm très résilient à son environnement. Elle est viscoélastique et les bactéries peuvent modifier de manière dynamique les propriétés mécaniques du biofilm. La grande variété de groupements fonctionnels disponibles grâce aux différentes biomolécules qui sont présentes dans la matrice permettent de piéger des molécules organiques et les ions dissous. Cela est responsable de plusieurs mécanismes de résistance bactérienne aux antibiotiques. L’objectif principal de cette thèse est de concevoir de nouvelles méthodologies analytiques pour étudier les biofilms et obtenir plus d’informations sur leur structure et ce qui peut les influencer. La spectroscopie infrarouge et la microscopie optique ont été utilisées dans des canaux microfluidiques pour suivre la croissance des biofilms. La combinaison des deux techniques permet l’obtention d’informations sur la composition en différentes biomacromolécules et sur la structure du biofilm. Ces méthodes ont permis d’évaluer l’efficacité de l’inoculation directe et de l’inoculation par un biofilm en amont. L’utilisation de microcanaux avec un faible rapport d’aspect a conduit en des différences importantes dans les conditions hydrodynamiques entre le centre du microcanal et ses coins. Dans cette configuration, les biofilms ont tendance à croître à partir des murs de côté qui sont plus courts. À cet endroit, les forces de cisaillement sont les plus faibles. La microscopie confocale intermittente montre la présence de canaux d’eau exempts de bactéries à l’intérieur d’un biofilmà proximité du coin du microcanal. Nous émettons l’hypothèse que ce canal a un rôle important dans le transfert de masse à l’intérieur du biofilm lorsqu’il devient plus épais. Lorsque les biofilms des bactéries Pseudomonas croissent, leur structure peut être influencée par le type de milieu de culture. Les biofilms croissant dans les milieux complexes obtenus à partir d’extraits de levure peuvent former des structures allongées nommées streamers qui ont été analysées par microscopie confocale à balayage laser. L’imagerie en trois dimensions de ces structures dans des microcanaux droits est rapportée pour la première fois. Dans un milieu de culture minimal avec le citrate de sodium comme seule source de carbone, nous avons observé et quantifié des patrons fractals à la base du biofilm dans le temps. Nous avons aussi conçu un dispositif microfluidique pour l’étude in situ par spectroscopie Raman exaltée par les surfaces (SERS). Cette méthode permet d’avoir un signal Raman rehaussé et une sensibilité élevée pour le citrate de sodium, une source de carbone commune pour les bactéries, à faible concentration. Les différentes méthodologies développées dans le cadre de cette thèse peuvent être appliquées à d’autre systèmes plus complexes dans le futur. La combinaison de la microfluidique pour le contrôle précis de l’écoulement ainsi que les mesures multiplexées dans des microcanaux en parallèle est la clé pour obtenir des indices importants et statistiquement pertinents sur la croissance des biofilms et les méthodes pour les contrôler. / Biofilms are widely spread among most of earth ecosystems. They can be formed by a variety of microorganisms. In the scope of this thesis, bacterial biofilms, more specifically those formed by the bacterium Pseudomonas sp. CT07, have been studied. They have many roles, useful and harmful, for the human health, agriculture and industry. As opposed to planktonic bacteria that can swim freely, sessile bacteria are attached to surfaces where they can form biofilms. During this process, they produce an extracellular matrix made of, but not exclusively, polysaccharides, proteins, DNA and RNA. The mechanical properties of the matrix make the biofilm very resilient to its surrounding environment. It is viscoelastic, and the bacteria can dynamically modify the mechanical properties of the biofilm. The high variety of functional groups available due to the different biomolecules present allows trapping of organic molecules and dissolved ions by the matrix. This is responsible for multiple mechanism of resistance to antimicrobial by bacteria. The main objective of this thesis is to develop new analytical methodologies to study biofilms and obtain more insights on the structure of biofilms and what can influence them. Infrared spectroscopy and optical microscopy were used in microfluidic channel to follow biofilm growth. The combination of the two techniques enabled acquisition of information on the composition in biomacromolecules and biofilm structure. These methods allowed to assess the efficiency of direct inoculation and inoculation from an upstream biofilm. The use of low aspect ratio channels resulted in strong differences in hydrodynamic conditions between the middle of the channel and the channel corners. In this configuration biofilms tended to grow from the short side-walls of microchannels where shear stress was lowest. Time-lapse confocal microscopy showed the presence of a biochannel inside the biofilm in the corner positions. It is hypothesized that this channel has an important role in mass transfer in biofilm as it grows thicker. As the biofilms of Pseudomonas bacteria grew, their structure could be influenced by the type of growth media. Biofilms grown in complex media obtained from yeast cell extract could form elongated structures called streamers which were analysed with confocal laser scanning microscopy. Three-dimensional imaging of these structures in regular straight microchannels is the first of its kind. In a minimal medium with citrate as the sole carbon source, we observe and quantify time-dependant fractal patterns at the biofilm base. We have also developed a microfluidic device for in situ study by surface enhanced Raman spectroscopy (SERS). This method allows having enhanced Raman signal and high sensitivity of sodium citrate, a common carbon source for bacteria, at low concentration. The different methodology developed in this thesis can be applied to more complex systems in the future. Combination of microfluidic for precise flow control and multiplexed measurement in massively parallelized channels is key to get deeper, statistically relevant insights in biofilm growth and methods to control them.

Page generated in 0.0524 seconds