• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 12
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 2
  • 1
  • 1
  • Tagged with
  • 51
  • 51
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Removal of nickel ion (Ni2+) from electroplating effluent by Enterobacter sp. immobilized on magnetites.

January 1994 (has links)
by Fung King-yuen Debera. / On t.p., "2+" is superscript. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1994. / Includes bibliographical references (leaves 102-112). / Acknowledgement --- p.i / Abstract --- p.ii / Table of Content --- p.iv / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Literature review --- p.1 / Chapter 1.1.1 --- Problems of heavy metals in the environment --- p.1 / Chapter 1.1.2 --- Methods of removal of heavy metal from industrial effluent --- p.5 / Chapter 1.1.3 --- The properties of magnetites --- p.10 / Chapter 1.1.4 --- Role of magnetites in water treatment --- p.12 / Chapter 1.1.5 --- The advantages of using magnetites and further application of magnetites --- p.16 / Chapter 1.2 --- Objectives of the study --- p.21 / Chapter 2. --- Materials and methods --- p.23 / Chapter 2.1 --- Selection of the organisms --- p.23 / Chapter 2.2 --- Culture media and chemicals --- p.23 / Chapter 2.3 --- Growth of the bacterial cells --- p.25 / Chapter 2.4 --- Immobilization of the bacterial cells on magnetites --- p.27 / Chapter 2.4.1 --- Effects of chemical and physical factors on the immobilization of the bacterial cells on magnetites --- p.27 / Chapter 2.4.2 --- Effect of pH on the desorption of cells from magnetites --- p.28 / Chapter 2.5 --- Nickel ion uptake experiments --- p.28 / Chapter 2.6 --- Effects of operational conditions on the nickel removal capacity of the magnetite-immobilized bacterial cells --- p.29 / Chapter 2 .6.1 --- Effect of physical factors --- p.29 / Chapter 2.6.2 --- Effect of chemical factors --- p.30 / Chapter 2.7 --- Optimization of the nickel removal efficiency --- p.30 / Chapter 2.8 --- Nickel adsorption isotherm of the magnetite- immobilized cells of Enterobacter sp4-2 --- p.30 / Chapter 2.9 --- Recovery of adsorbed Ni2+ from the magnetite- immobilized cells of Enterobacter sp4-2 --- p.31 / Chapter 2.9.1 --- Multiple adsorption-desorption cycles of Ni2+ by using citrate buffer --- p.32 / Chapter 2.9.2 --- Multiple adsorption-desorption cycles of Ni2+ by using ethylenediaminetetraacetic acid (EDTA) --- p.33 / Chapter 2.10 --- Effect of acidic treatment --- p.33 / Chapter 2.10.1 --- Effect of acidic treatment on the nickel removal capacity of the magnetites and the magnetite- immobilized cells of Enterobacter sp4-2 --- p.33 / Chapter 2.10.2 --- Effect of acidic treatment on the recovery of the adsorbed Ni2+ from magnetites and the magnetite- immobilized cells Enterobacter sp4-2 --- p.34 / Chapter 2.11 --- Removal and recovery of Ni2+ from the electroplating effluent --- p.34 / Chapter 3. --- Results --- p.36 / Chapter 3.1 --- Effects of chemical and physical factors on the immobilization of the bacterial cells on magnetites --- p.36 / Chapter 3.1.1 --- Effect of pH --- p.36 / Chapter 3.1.2 --- Effect of cells to magnetites ratio --- p.36 / Chapter 3.1.3 --- Effect of temperature --- p.39 / Chapter 3.2 --- Effect of pH on the desorption of cells from magnetites --- p.39 / Chapter 3.3 --- Nickel ion uptake experiments --- p.44 / Chapter 3.4 --- Effects of operational conditions on the nickel removal capacity of the magnetite-immobilized bacterial cells --- p.44 / Chapter 3.4.1 --- Effect of reaction temperature --- p.44 / Chapter 3.4.2 --- Effect of retention time --- p.44 / Chapter 3.4.3 --- Effect of pH --- p.47 / Chapter 3.4.4 --- Effect of the presence of cations --- p.50 / Chapter 3.4.5 --- Effect of the presence of anions --- p.50 / Chapter 3.5 --- Optimization of the nickel removal efficiency --- p.55 / Chapter 3.6 --- Nickel adsorption isotherm of the magnetite- immobilized cells of Enterobacter sp4-2 --- p.55 / Chapter 3.7 --- Recovery of adsorbed Ni2+ from the magnetite- immobilized cells of Enterobacter sp4-2 --- p.59 / Chapter 3.7.1 --- Multiple adsorption-desorption cycles of Ni2+ by using citrate buffer --- p.59 / Chapter 3.7.2 --- Multiple adsorption-desorption cycles of Ni2+ by using ethylenediaminetetraacetic acid (EDTA) --- p.63 / Chapter 3.8 --- Effect of acidic treatment --- p.63 / Chapter 3.8.1 --- Effect of acidic treatment on the nickel removal capacity of the magnetites and the magnetite-immobilized cells of Enterobacter sp4-2 --- p.63 / Chapter 3.8.2 --- Effect of acidic treatment on the recovery of the adsorbed Ni2+ from the magnetites and the magnetite-immobilized cells of Enterobacter sp4-2 --- p.66 / Chapter 3.9 --- Removal and recovery of Ni2+ from the electroplating effluent --- p.69 / Chapter 4. --- Discussion --- p.72 / Chapter 4.1 --- Selection of the organisms --- p.72 / Chapter 4.2 --- Effects of chemical and physical factors on the immobilization of the bacterial cells on magnetites --- p.72 / Chapter 4.2.1 --- Effect of pH --- p.72 / Chapter 4.2.2 --- Effect of cells to magnetites ratio --- p.74 / Chapter 4.2.3 --- Effect of temperature --- p.75 / Chapter 4.2.4 --- Effect of pH on the desorption of cells from magnetites --- p.76 / Chapter 4.3 --- Nickel ion uptake experiments --- p.78 / Chapter 4.4 --- Effects of operational conditions on the nickel removal capacity of the magnetite-immobilized bacterial cells --- p.80 / Chapter 4.4.1 --- Effect of reaction temperature --- p.80 / Chapter 4.4.2 --- Effect of retention time --- p.81 / Chapter 4.4.3 --- Effect of pH --- p.82 / Chapter 4.4.4 --- Effect of the presence of cations --- p.83 / Chapter 4.4.5 --- Effect of the presence of anions --- p.84 / Chapter 4.5 --- Optimization of the nickel removal efficiency --- p.85 / Chapter 4.6 --- Nickel adsorption isotherm of the magnetite- immobilized cells of Enterobacter sp4-2 --- p.86 / Chapter 4.7 --- Recovery of adsorbed Ni2+ from the magnetite- immobilized cells of Enterobacter sp4-2 --- p.87 / Chapter 4.7.1 --- Multiple adsorption-desorption of Ni2+ --- p.89 / Chapter 4.7.2 --- Effect of acidic treatment on the nickel removal capacity and recovery --- p.91 / Chapter 4.8 --- Removal and recovery of Ni2+ from the electroplating effluent --- p.93 / Chapter 5. --- Conclusion --- p.96 / Chapter 6. --- Summary --- p.99 / Chapter 7. --- References --- p.102
32

THE EFFECT OF VARIOUS CATIONS IN THE RECOVERY MEDIUM ON APPARENT SURVIVALOF HEAT-INJURED BACTERIA

Abdul-Nour, Basima Ayoub, 1932- January 1966 (has links)
No description available.
33

The tolC locus of Escherichia coli K-12 : gene, protein and function / Renato Morona

Morona, Renato January 1982 (has links)
Typescript (photocopy) / xi, 115 leaves, [24] leaves of plates : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Microbiology and Immunology, 1982
34

Adenylate Energy Charge Determinations of Soil Bacteria Grown in Soil Extract Medium

Rodriguez, Luis A. (Luis Antonio) 08 1900 (has links)
The adenylate energy charge values of twenty bacteria isolated from soil and cultured in a medium consisting of soil and distilled water were determined by the luciferin-luciferase bioluminescense method. The purpose of this study was to examine the growth and energy charge values of these organisms in soil extract medium, and to determine what effect the addition of glucose has on their energy charge values. Three of the organisms employed in this study showed energy charge values similar to those reported for bacteria grown in enriched media. The remainder of the isolates demonstrated low energy charge values, and scant growth in the soil medium.
35

Streptococcus sanguis adhesins mediating attachment to saliva-coated hydroxyapatite beads

Ganeshkumar, Nadarajah January 1988 (has links)
Streptococcus sanguis 12 adhesins mediating attachment to saliva-coated hydroxyapatite beads (S-HA) were isolated and characterized. Cell surface fibrils were released from this organism by a method of freeze-thawing followed by brief homogenization. Fibrils in the homogenate were precipitated by ultracentrifugation or ammonium sulphate precipitation. This precipitate was shown to contain fibrils by electron microscopy. Sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis (PAGE) analysis of fibrils showed a single band which stained with Coomassie blue and periodate-Schiff. The molecule had a Mr in excess of 300,000. This protein has been given the name long-fibril protein (LFP). Antibody raised against the LFP reacted with long fibrils of S. sanguis 12. LFP was degraded by subtilisin, pronase, papain, and trypsin, but not by chymotrypsin and muramidases. Fibrils were hydrolyzed by subtilisin into discrete lower Mr protein bands which reacted with both anti-fibril and anti-LFP serum. F(ab')₂ prepared from anti-fibril IgG inhibited adhesion of S. sanguis 12 to pH modified S-HA, indicating that fibrils were acting as an adhesin mediating attachment via the neuraminidase-sensitive receptor on S-HA. Five recombinant clones expressing surface antigens of S. sanguis 12 were isolated by ligating a partial digest of S. sanguis 12 chromosomal DNA with the plasmid vector pUC 18, and transforming into Escherichia coli JM83. Recombinant clones were screened by a colony immunoassay with antisera raised against either S. sanguis 12 whole cells or with anti-fibril serum. Positive clones were then analyzed by SDS-PAGE, Western blotting and restriction endonuclease digestion of recombinant plasmids. One recombinant plasmid, pSA2 expressed two proteins of Mrs of 20,000 and 36,000. The 36,000-Mr protein has been designated as SsaB (S. sanguis adhesin B). Both proteins were purified to homogeneity by gel filtration and ion exchange chromatography. Anti-SsaB serum was used in an immunogold bead labelling experiment to demonstrate that this protein was present on the surfaces of S. sanguis 12 and in the non-saliva-aggregating variant 12na, but not on the non-adhering non-aggregating hydrophilic variant 12L. Western blot analysis with anti-SsaB and anti-20 kd sera showed that both SsaB and the 20 kd proteins were present in cell extracts of S. sanguis 12 and its variants. SsaB inhibited adhesion of S. sanguis 12na to S-HA, indicating that it was the adhesin which mediates the binding to the pH-sensitive receptor. SsaB was found to be present on all S. sanguis strains tested, but not on other oral streptococci. Chemical cross-linking studies of SsaB on S. sanguis 12 cell surface suggested that this protein may be present in a higher Mr complex. This study provides direct evidence that binding of S. sanguis 12 to S-HA involves at least two adhesin-receptor interactions. The adhesin mediating binding to the neuraminidase-sensitive receptor on S-HA involves the long fibrils and the adhesin binding to the acid labile receptor is a 36,000 Mr protein. / Science, Faculty of / Microbiology and Immunology, Department of / Graduate
36

Light and Temperature Cues Elicit Metabolic Reprogramming in the Non-phototrophic Bacterium Pseudomonas aeruginosa

Kahl, Lisa Juliane January 2020 (has links)
Earth’s organisms are exposed to day-night cycles. These periodic changes in environmental factors, such as temperature and light exposure, trigger regulatory processes that coordinate physiological adaptations in organisms. Circadian organisms, i.e., most eukaryotes and some phototrophic bacteria, undergo autonomous 24-hour biological rhythms that are synchronized to day-night cycles via sensing light cues. However, the extent to which non-phototrophic bacteria tune their physiology to diurnal cycles and exhibit rhythmic behavior has been underexplored. For my thesis work, I investigated how the chemotrophic bacterium Pseudomonas aeruginosa responds to light and temperature signals. This metabolically versatile bacterium regulates its physiology through a vast array of environmental sensing mechanisms and has evolved multiple strategies to cope with redox imbalances. This thesis seeks to address how P. aeruginosa coordinates its metabolic and redox-balancing programs in response to light and temperature changes that occur in its environmental niche. In Chapter 1, I will present background information on relevant concepts such as biological rhythms and photosensory mechanisms and discuss how these principles are connected to physiological adaptations and metabolic plasticity in both phototrophic and non-phototrophic organisms, with a specific focus on chemotrophic bacteria. In Chapter 2, I will demonstrate that P. aeruginosa biofilm development is attenuated by light and that this process is regulated by the integration of light and redox signals. My work presented in Chapter 3 will provide evidence that the transcriptomic and metabolic landscape of P. aeruginosa is vastly reorganized in response to light/dark cycles. In the Chapter 4, I will explore how this reprogramming is manifested through activity by the respiratory machinery and I will demonstrate that P. aeruginosa undergoes intrinsic respiratory oscillations. As an opportunistic pathogen, P. aeruginosa will experience circadian-controlled changes during infection of a (circadian) host through host immune activity as well as exposure to cyclic environmental factors like light and temperature. I will discuss how environmental sensing is relevant for P. aeruginosa’s adaptation to its host-associated lifestyle. In conclusion, the research presented in this thesis establishes that P. aeruginosa exhibits an intricate physiological response to environmental signals, particularly light and temperature. This thesis contributes to a growing body of work that underscores how bacteria have evolved intricate mechanisms to integrate information about their environmental habitat, including host-associated conditions.
37

Isolation and characterization of carbofuran and dicamba degrading bacteria

Taraban, Ronald H. 24 October 2005 (has links)
This study was conducted to isolate and characterize bacteria that have the capacity to degrade both carbofuran and dicamba. The pathways of degradation for both pesticides were elucidated. An aerobic, carbofuran-degrading bacterium was isolated from a high concentration carbofuran bioreactor. The isolate degrades carbofuran at the upper limit of carbofuran solubility (approximately 700 mg L⁻¹), to carbofuran phenol. In aqueous mineral salts medium with carbofuran as Furadan 4F (6 g L⁻¹ a.i.), degradation of carbofuran to undetectable levels required approximately 100 days. Although carbofuran phenol was not completely degraded, the cells remained viable in the presence of unusually high concentrations of both surfactant and carbofuran phenol. Additional nutrient sources had little effect upon the rate of degradation of carbofuran in pure culture. A dicamba-degrading consortium enriched from wetland soil, using the batch culture method, was used to elucidate the pathway of dicamba degradation under anaerobic conditions. The consortium consisted of one sulfate reducing bacterium, one fermenter, and three methanogens. The sulfate reducing bacterium was isolated from the consortium using sulfate as a terminal electron acceptor and 2-bromoethanesulfonic acid was added to inhibit the growth of the methanogens. Since the fermenter is dependent upon the methanogens, elimination of these organisms caused the elimination of the fermenter. Three methanogens (Methanothrix, Methanosarcina and Methanospirillum sp) were isolated with acetate and headspace gas consisting of H₂-CO₂. Degradation of dicamba proceded through an initial demethylation reaction yielding 3,6-dichlorosalicylic acid, as determined by high performance liquid chromatography (HPLC) analysis of aqueous medium. This was followed by a reductive dehalogenation reaction at the meta position of 3,6-dichlorosalicylic acid forming 6-chlorosalicylic acid. The metabolites were isolated using thin layer chromatography. Confirmation of metabolite identity was achieved using HPLC, and mass spectrometry. It appears that the fermenter was responsible for mediating the demethylation reaction. The consortium was unable to mineralize the aromatic ring. The substrate specificity of the dicamba-degrading consortium was investigated. The consortium was found to have the capacity to mediate the reductive dehalogenation of both 3-chlorosalicylic acid and 2,5-dichlorobenzoic acid at the meta position. The consortium was unable to dehalogenate either 3-chlorobenzoic acid, 4-chlorosalicylic acid, 5-chlorosalicylic acid, or 2,5-dichlorophenol. Addition of the reducing agent cysteine (0.025% and 0.050%) to a yeast extract amended (0.04%) mineral salts medium containing 3-chlorosalicylic acid reduced the rate of dehalogenation compared to medium containing sodium sulfide as the reducing agent. Only limited dehalogenation of 3- chlorosalicylic acid and 2,5-dichlorobenzoic acid was observed when the sulfate reducing bacterium was cultured alone in a yeast extract amended medium, suggesting that the mutualistic efforts of a mixed population of anaerobes were necessary to efficiently mediate reductive dehalogenation. / Ph. D.
38

Studies of the NAD metabolism of Haemophilus influenzae

Kahn, David W. January 1985 (has links)
Haemophilus influenzae, as well as other members of the genus which require V-factor, display a unique growth requirement for intact NAD. This organism, the primary cause of bacterial meningitis, is incapable of synthesis of pyridine nucleotides from the usual precursors. An externally directed nucleotide pyrophosphatase was extracted from the organism and purified 700-fold using ammonium sulfate precipitation, ion-exchange and affinity chromatography. The enzyme was determined to be a periplasmic glycoprotein consisting of a single polypeptide of M<sub>r</sub>= 65,000. The enzyme had a pH optimum over the range .pH 8.0-9.0 and was not activated by the addition of mono or divalent cations, nor was it inhibited by EDTA. The enzyme was observed to have a broad substrate specificity and functioned in a manner indicative of negative cooperativity with all substrates except several modified in the adenine ring. The most effective inducer of negative cooperativity was NAD as indicated by its Hill coefficient of 0.26. The enzyme was inhibited by adenine nucleotides _ and 5'-AMP, at 20 μM, abolished the negative cooperativity of the enzyme. The enzyme was determined to possess excitation and emission maxima at 286 and 337 nm, respectively, indicative of the presence of tryptophan. The fluorescence of the enzyme was quenched by addition of aliquots of adenine nucleotides. The quenching occurred in a biphasic manner. The enzyme was inactivated by 2,3- butanedione and by Woodward's Reagent K. Studies of the ability of compounds to serve as V-factor revealed that nicotinamide mononucleotide (NM), NAD, as well as analogs of NAD, served as V-factor. The ability of compounds to inhibit growth was also accessed, and the growth of the organism was seen to be inhibited by adenine nucleotides as well as other compounds. The inhibition of growth of Haemophilus influenzae has important clinical implications which are discussed, as well as a model of the NAD metabolism of the organism which is presented. / Ph. D.
39

Effects of fatty acids on bacterial foaming in activated sludge process.

January 1999 (has links)
by Sonia, Tze Yan Lo. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 132-147). / Abstracts in English and Chinese. / Acknowledgments --- p.i / Abstract --- p.ii / Table of Content --- p.iii / List of Figures --- p.ix / List of Tables --- p.xiii / List of Abbreviations --- p.xv / Terminology --- p.xvii / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Objectives of sewage treatment process --- p.1 / Chapter 1.1.1 --- Types of treatment --- p.1 / Chapter 1.1.2 --- Activated sludge process --- p.2 / Chapter 1.1.3 --- Functioning of activated sludge process --- p.2 / Chapter 1.2 --- Common microbially mediated solid separation problems --- p.4 / Chapter 1.3 --- Bacterial foaming --- p.4 / Chapter 1.4 --- Factors enhancing foam production --- p.5 / Chapter 1.4.1 --- Substrates present in sewage --- p.6 / Chapter 1.4.2 --- Operating conditions --- p.8 / Chapter 1.4.3 --- Overpopulation of foaming bacteria --- p.8 / Chapter 1.5 --- Bacteria reported for foaming --- p.9 / Chapter 1.5.1 --- Foaming bacteria reported in different countries --- p.9 / Chapter 1.5.2 --- Nocardia Biology --- p.10 / Chapter 1.6 --- Metaboilsm of hydrophobic substances in sewage --- p.11 / Chapter 1.6.1 --- Metabolism of alkanes --- p.11 / Chapter 1.6.2 --- Metabolism of grease and oils --- p.11 / Chapter 1.6.3 --- Functions of lipids in the formation of bacterial foam --- p.11 / Chapter 1.7 --- Competition between floc-formers and foam-formers --- p.12 / Chapter 1.7.1 --- Interactions between microbial populations in activated sludge process --- p.12 / Chapter 1.7.2 --- Monod relationship and kinetic selection --- p.15 / Chapter 1.7.3 --- Effects of grease and oils in dominance of foaming bacteria --- p.17 / Chapter 1.8 --- Suggested mechanisms for bacterial foaming --- p.18 / Chapter 1.8.1 --- Mechanism suggested in early stage --- p.18 / Chapter 1.8.2 --- Froth flotation theory --- p.18 / Chapter 1.9 --- Problems from foaming --- p.21 / Chapter 1.10 --- Control of filamentous bacterial foaming --- p.22 / Chapter 2. --- Objectives of the study --- p.26 / Chapter 3. --- Materials and Methods --- p.27 / Chapter 3.1 --- Sample collection --- p.27 / Chapter 3.2 --- Isolation of major foaming and non-foaming bacteria --- p.27 / Chapter 3.2.1 --- Isolation of foaming bacteria --- p.27 / Chapter 3.2.2 --- Isolation of non-foaming bacteria --- p.30 / Chapter 3.3 --- "Physiological studies on type strain Nocardia amarae ATCC 27810, isolated major foaming bacterium, Nocardia sp. CU-2 and non- foaming bacterium, Aeromonas sp. CU-1" --- p.31 / Chapter 3.4 --- Effects of fatty acids on growth kinetics of Nocardia sp. CU-2 and Aeromonas sp. CU-1 in pure culture --- p.32 / Chapter 3.5 --- Effects of fatty acids on growth yields of Nocardia sp. CU-2 and Aeromonas sp. CU-1 in pure culture --- p.34 / Chapter 3.6 --- Effects of fatty acids on growth yields of Nocardia sp. CU-2 and Aeromonas sp. CU-1 in mixed culture --- p.37 / Chapter 3.7 --- Effect of fatty acids on the propensity of foam formation of Nocardia sp. CU-2 growing with different fatty acids --- p.38 / Chapter 3.8 --- Effects of fatty acids on hydrocarbon affinity (HA) of Nocardia sp CU-2 --- p.39 / Chapter 3.9 --- "Effects of fatty acids on the filamentous growth, nocardial growth, foaming abilities and settling abilities of activated sludge in batch cultures of foaming and non-foaming samples" --- p.43 / Chapter 4. --- Results --- p.48 / Chapter 4.1 --- Isolation of foaming and non-foaming bacteria --- p.48 / Chapter 4.1.1 --- Isolation of foaming bacteria --- p.48 / Chapter 4.1.2 --- Isolation of non-foaming bacteria --- p.48 / Chapter 4.2 --- "Physiological studies on type strain Nocardia amarae ATCC 27810, isolated major foaming bacterium, Nocardia sp. CU-2 and non- foaming bacterium, Aeromonas sp. CU-1" --- p.56 / Chapter 4.3 --- Effects of fatty acids on growth kinetics of Nocardia sp. CU-2 and Aeromonas sp. CU-1 in pure culture --- p.56 / Chapter 4.4 --- Effects of fatty acids on growth yields of Nocardia sp. CU-2 and Aeromonas sp. CU-1 in pure culture --- p.60 / Chapter 4.4.1 --- Effects of fatty acids on Nocardia sp. CU-2 --- p.77 / Chapter 4.4.2 --- Effects of fatty acids on Aeromonas sp. CU-1 --- p.77 / Chapter 4.5 --- Effects of fatty acids on growth yields of Nocardia sp. CU-2 and Aeromonas sp. CU-1 in mixed culture --- p.78 / Chapter 4.6 --- Effect of fatty acids on the propensity of foam formation of Nocardia sp. CU-2 growing with different fatty acids --- p.78 / Chapter 4.7 --- Effects of fatty acids on hydrocarbon affinity (HA) of Nocardia sp CU-2 --- p.83 / Chapter 4.8 --- "Effects of fatty acids on the filamentous growth, nocardial growth, foaming abilities and settling abilities of activated sludge in batch cultures of foaming and non-foaming samples" --- p.103 / Chapter 4.8.1 --- The filamentous growth of activated sludge --- p.103 / Chapter 4.8.2 --- Nocardial count --- p.103 / Chapter 4.8.3 --- Foam ratings --- p.107 / Chapter 4.8.4 --- Sludge settling ability --- p.107 / Chapter 5. --- Discussion --- p.114 / Chapter 5.1 --- "Physiological studies on type strain Nocardia amarae ATCC 27810, isolated major foaming bacterium, Nocardia sp. CU-2 and non- foaming bacterium, Aeromonas sp. CU-1" --- p.114 / Chapter 5.2 --- Effects of fatty acids on growth kinetics of Nocardia sp. CU-2 and Aeromonas sp. CU-1 in pure culture --- p.114 / Chapter 5.2.1 --- Inhibition effects of MC fatty acids on growth of Nocardia sp. CU-2 --- p.115 / Chapter 5.2.2 --- Effects of fatty acids on specific growth rates --- p.115 / Chapter 5.2.3 --- Length of lag phase --- p.115 / Chapter 5.2.4 --- Kinetic selection of Nocardia sp. CU-2 and Aeromonas sp. CU-1 --- p.116 / Chapter 5.3 --- Effects of fatty acids on growth yields of Nocardia sp. CU-2 and Aeromonas sp. CU-1 in pure culture --- p.117 / Chapter 5.3.1 --- Growth of Nocardia sp. CU-2 and Aeromonas sp. CU-1 in different media --- p.117 / Chapter 5.3.2 --- "Effects of fatty acids on Nocardia sp, CU-2" --- p.118 / Chapter 5.3.3 --- Effects of fatty acids on Aeromonas sp. CU-1 --- p.119 / Chapter 5.4 --- Effects of fatty acids on growth yields of Nocardia sp. CU-2 and Aeromonas sp. CU-1 in mixed culture --- p.119 / Chapter 5.4.1 --- Effects of fatty acids in NB --- p.119 / Chapter 5.4.2 --- Effects of fatty acids in MM --- p.120 / Chapter 5.4.3 --- Effects of fatty acids in SS --- p.121 / Chapter 5.5 --- Effect of fatty acids on the propensity of foam formation of Nocardia sp. CU-2 growing with different fatty acids --- p.122 / Chapter 5.6 --- Effects of fatty acids on hydrocarbon affinity (HA) of Nocardia sp CU-2 --- p.122 / Chapter 5.6.1 --- Differences in HA of Nocardia sp. CU-2 among three hydrocarbons --- p.122 / Chapter 5.6.2 --- Differences in HA of Nocardia sp. CU-2 among three different media --- p.123 / Chapter 5.6.3 --- Effects of fatty acids on HA of Nocardia sp. CU-2 --- p.123 / Chapter 5.7 --- "Effects of fatty acids on the filamentous growth, nocardial growth, foaming and settling abilities of activated sludge in batch cultures" --- p.124 / Chapter 5.7.1 --- Abundance of filamentous microorganisms in activated sludge --- p.124 / Chapter 5.7.2 --- Nocardial count --- p.124 / Chapter 5.7.3 --- Foam ratings --- p.125 / Chapter 5.7.4 --- Sludge settling ability --- p.126 / Chapter 6. --- Conclusion --- p.127 / Chapter 7. --- Summary --- p.129 / Chapter 8. --- References --- p.132
40

La flore commensale bactérienne de l'enfant: impact et prévention /cpar Sarah Jourdain

Jourdain, Sarah January 2012 (has links)
Doctorat en Sciences médicales / info:eu-repo/semantics/nonPublished

Page generated in 0.0744 seconds