• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 1
  • 1
  • Tagged with
  • 51
  • 51
  • 51
  • 10
  • 8
  • 8
  • 7
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The synthesis of phosphatidylinositol mannans and their analogues

Ainge, Gary D, n/a January 2008 (has links)
Phosphatidylinositol mannosides (PIMs) isolated from mycobacteria have been identified as an important class of glycolipids that possess significant immune modulating properties. To provide discrete synthetic compounds for biological assay, this thesis describes the syntheses of three PIM molecules, namely dipalmitoyl PIM2 (12), PIM4 (84), and PIM6 (108), and two PIM2 analogues designed for increased stability, PIM2ME (147) and PIM2MA (148). The synthesis of all of these molecules involved mannosylation of 1-O-allyl-3,4,5-tri-O-benzyl-D-myo-inositol (22), which was prepared from methyl α-D-glucopyranoside in 8% yield over 8 steps, using a Ferrier reaction strategy. A common intermediate, 3,4,5-tri-O-benzyl-2,6-di-O-(2,3,4,6-tetra-O-benzyl-α-D-mannopyranosyl)-D-myo-inositol (9), was used for the syntheses of 12, 147, and 148. This compound was prepared by bis-mannosylation of the C-1 and C-6 hydroxyl groups of 22 with 2-O-acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl trichloroacetimidate (63) to give, after protecting group manipulations, the α,α-pseudo-trisaccharide 9 in 37% over 4 steps. The selectivity of the desired α,α-product was found to be increased by the selection of Et₂O as the solvent for the glycosylation reaction. The C-1 hydroxyl group of 9 was coupled to benzyl (1,2-di-O-palmitoyl-sn-glycero)-diisopropylphosphoramidite (28) using 1H-tetrazole. Global debenzylation of the resulting product gave PIM2 (12) in 23% yield over 6 steps from 22. In a similar fashion 9 was coupled to 1-O-hexadeconyl-2-O-hexadecyl-sn-glycero-3-O-benzyl-(N,N-diisopropyl)-phosphoramidite (156), and subsequent deprotection gave PIM2ME (147) in 30% yield over 2 steps from 9. Coupling of 9 with 2-deoxy-1-O-hexadeconyl-2-O-hexadeconylamino-sn-glycero-3-O-benzyl-(N,N-diisopropyl)-phosphoramidite (172) and subsequent deprotection gave PIM2MA (148) in 47% yield over 2 steps from 9. A modified approach was required for the syntheses of PIM4 (84) and PIM6 (108). A selective glycosylation of the C-6 hydroxyl of 22 with an orthogonally protected mannose donor would allow extension of the manno-oligosaccharide in a 2+3 or 4+3 glycosylation strategy required to build the pseudo-pentasaccharide or pseudo-heptasaccharide core of 84 or 108 respectively. Sequential mannosylation of 22, firstly at the more reactive C-6 hydroxyl, with 2-O-acetyl-3,4-di-O-benzyl-6-O-tert-butyldiphenylsilyl-α-D-mannopyranosyl trichloroacetimidate (85), was followed by mannosylation at the C-2 hydroxyl with 63. Removal of the silyl protecting group followed by a 2+3 coupling with the dimannoside donor, 2-O-acetyl-6-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-3,4-di-O-benzyl-α-D-mannopyranosyl trichloroacetimidate (95), gave a pseudo-pentasaccharide intermediate. Protecting group manipulations followed by coupling of the of the C-1 hydroxyl group of the inositol ring to phosphoramidite 28, and a global debenzylation, gave PIM4 (84) in 6% yield over 9 steps from 22. During the synthesis of PIM6 (108), thioglycosylation chemistry was explored and found to be comparable to reactions with trichloroacetimidate donors. Similar methodology was used for the synthesis of PIM6 (108) as had previously been carried out for the synthesis of PIM4 (84). Mannosylation at the more reactive C-6 hydroxyl of 22 with either phenyl 2-O-benzoyl-3,4-di-O-benzyl-6-O-triisopropylsilyl-1-thio-α-D-mannopyranoside (112) or 2-O-benzoyl-3,4-di-O-benzyl-6-O-triisopropylsilyl-α-D-mannopyranosyl trichloroacetimidate (113), was followed by mannosylation at the C-2 hydroxyl with 63. Removal of the silyl group followed by a 4+3 coupling with either of the tetramannoside donors, phenyl (2-O-benzoyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-(1[to]2)-(3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-(1[to]2)-(3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-(1[to]6)-2-O-benzoyl-3,4-di-O-benzyl-1-thio-α-D-mannopyranoside (109) or (2-O-benzoyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-(1[to]2)- (3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-(1[to]2)-(3,4,6-tri-O-benzyl-α-D-mannopyranosyl-(1[to]6)-2-O-benzoyl-3,4-di-O-benzyl-α-D-marmopyranosyl trichloroacetimidate (131) gave a gave a pseudo-heptasaccharide intermediate. Protecting group manipulations followed by coupling of the of the C-1 hydroxyl group of the inositol ring to phosphoramidite 28, and a global debenzylation, gave PIM6 (108) in 9% yield over 9 steps from 22. To aid characterisation of 108, a sample was deacylated to afford dPIM6 (144) which gave the same spectral data as a sample from a natural source. The compounds PIM2 (12), PIM4 (84), PIM2ME (147), and PIM2MA (148) were assayed for adjuvant activity and were found to have comparable activity to fractions isolated from natural sources. The analogue PIM2ME (147) gave the best results and is currently undergoing further development.
12

Cell wall differentiation among Escherichia coli parent and its radiation resistant mutants.

Holley, Richard Alan. January 1969 (has links)
No description available.
13

Alkaline phosphatase and the cell envelope of Pseudomonas aeruginosa.

Day, Donal F. January 1973 (has links)
No description available.
14

Mechanism of energy coupling and kinetics of Na+-dependent transport in cells and in isolated membrane vesicles of a marine pseudomonad.

Sprott, Gordon Dennis. January 1973 (has links)
No description available.
15

Cell wall differentiation among Escherichia coli parent and its radiation resistant mutants.

Holley, Richard Alan. January 1969 (has links)
No description available.
16

Alkaline phosphatase and the cell envelope of Pseudomonas aeruginosa.

Day, Donal F. January 1973 (has links)
No description available.
17

Mechanism of energy coupling and kinetics of Na+-dependent transport in cells and in isolated membrane vesicles of a marine pseudomonad.

Sprott, Gordon Dennis. January 1973 (has links)
No description available.
18

A comparative study of the cell walls of Rhizobium japonicum and Rhizobium leguminosarum in free-living and bacteroid forms

Hooker, Karen Lee. January 1979 (has links)
Call number: LD2668 .T4 1979 H66 / Master of Science
19

The synthesis and characterisation of phosphatidylinositol mannans

Dyer, Blake S, n/a January 2008 (has links)
Mycobacterial cell wall components have been shown to elicit a range of immunological responses in mammalian hosts. A family of cell wall antigens, the phosphatidylinositol mannans (PIMs), have been shown to reduce allergic response in a murine model of allergic airway disease and have been suggested as potential therapeutic agents. Isolation and characterisation of these compounds is not facile. To confirm the structure of PIMs a number of phosphatidylinositols (PIs), 1a-c, PIM1s 2a, 2d and 2e, and AcPIM1s, 2g and 2f, were prepared to allow assignment of the acylation pattern of natural products and for evaluation in immunological assays. As the natural products include 19:0 acylation in the form of (R)-tuberculostearoyl residues, a source of (R)-tuberculostearic acid was needed. To this end, an efficient synthesis of (R)-tuberculostearic acid from (S)-citronellol, utilising a copper-catalysed cross-coupling reaction and a modified Julia olefination, was developed. This material was incorporated into diacylglycerols prepared from (R)-benzyl glycidol. A protected myo-inositol derivative, 188, and two protected pseudo-disaccharides, 10 and 241, were prepared from myo-inositol via desymmetrisation utilising a camphylidene acetal. These were coupled with diacylglycerols via a phosphate ester and deprotected to give PIs, PIM1s and AcPIM1s. Mass spectrometry studies were undertaken on the PIs, 1a-c, PIM1s 2a, 2d and 2e, and AcPIM1s, 2g and 2f which structures that have been established by chemical synthesis. Comparison of these data with those reported for natural PIs and PIMs containing 19:0 ((R)-tuberculostearoyl) and 16:0 (palmitoyl) acyl groups unequivocally established that the 19:0 residue was located at the sn-1 and the 16:0 at the sn-2 position of the glycerol moiety in nature.
20

Lysis of a marine pseudomonad.

Rayman, Mohamad Khalil. January 1970 (has links)
No description available.

Page generated in 0.0985 seconds