Spelling suggestions: "subject:"abacterial genome"" "subject:"bybacterial genome""
11 |
Vers une cartographie fine des polymorphismes liés à la résistance aux antimicrobiens / Fine mapping of antibiotic resistance determinantsJaillard Dancette, Magali 12 December 2018 (has links)
Mieux comprendre les mécanismes de la résistance aux antibiotique est un enjeu important dans la lutte contre les maladies infectieuses, qui fait face à la propagation de bactéries multi-résistantes. Les études d'association à l'échelle des génomes sont des outils puissants pour explorer les polymorphismes liés aux variations phénotypiques dans une population. Leur cadre méthodologique est très documenté pour les eucaryotes, mais leur application aux bactéries est très récente. Durant cette thèse, j'ai cherché à rendre ces outils mieux adaptés aux génomes plastiques des bactéries, principalement en travaillant sur la représentation des variations génétiques. En effet, parce que les bactéries ont la capacité à échanger du matériel génétique avec leur environnement, leurs génomes peuvent être trop différents au sein d'une espèce pour être alignés contre une référence. La description des variations par des fragments de séquence de longueur k, les k-mers, offre la flexibilité nécessaire mais ne permet pas une interprétation directe des résultats obtenus. La méthode mise au point teste l'association de ces k-mers avec le phénotype, et s'appuie sur un graphe de De Bruijn pour permettre la visualisation du contexte génomique des k-mers identifiés par le test, sous forme de graphes. Cette vue synthétique renseigne sur la nature de la séquence identifiée: il peut par exemple s'agir de polymorphisme local dans un gène ou de l'acquisition d'un gène dans un plasmide. Le type de variant représenté dans un graphe peut être prédit avec une bonne performance à partir de descripteurs du graphe, rendant plus opérationnelles les approches par k-mers pour l'étude des génomes bactériens / The emergence and spread of multi-drug resistance has become a major worldwide public health concern, calling for better understanding of the underlying resistance mechanisms. Genome-wide association studies are powerful tools to finely map the genetic polymorphism linked to the phenotypic variability observed in a population. However well documented for eukaryotic genome analysis, these studies were only recently applied to prokaryota.Through this PhD project, I searched how to better adapt these tools to the highly plastic bacterial genomes, mainly by working on the representation of the genetic variations in these genomes. Indeed, because the bacteria have the faculty to acquire genetic material by a means other than direct inheritance from a parent cell, their genomes can differ too much within a species to be aligned against a reference. A representation using sequence fragments of length k - the so-called k-mers - offers the required flexibility but generates redundancy and does not allow for a direct interpretation of the identified associations. The method we set up tests the association of these k-mers with the phenotype, and takes advantage of a De Bruijn graph (DBG) built over all genomes to remove the local redundancy of k-mers, and offer a visualisation of the genomic context of the k-mers identified by the test. This synthetic view as DBG subgraphs informs on the nature of the identified sequence: e.g. local polymorphism in a gene or gene acquired through a plasmid. The type of variant can be predicted correctly in 96% of the cases from descriptors of the subgraphs, providing a tractable framework for k-mer-based association studies
|
12 |
Discrimination analytique des génomes bactériens / Analytical discrimination of bacterial genomesPoirion, Olivier 28 November 2014 (has links)
Le génome bactérien est classiquement pensé comme constitué de “chromosomes”, éléments génomiques essentiels pour l’organisme, stables et à évolution lente, et de “plasmides”, éléments génomiques accessoires, mobiles et à évolution rapide. La distinction entre plasmides et chromosomes a récemment été mise en défaut avec la découverte dans certaines lignées bactériennes d’éléments génomiques intermédiaires, possédant à la fois des caractéristiques de chromosomes et de plasmides. Désignés par le terme de “chromosomes secondaires”, “mégaplasmides” ou “chromid”, ces éléments sont dispersés parmi les lignées bactériennes et sont couramment décrits comme des plasmides adaptés et modifiés. Cependant, leur véritable nature et les mécanismes permettant leur intégration dans le génome stable reste à caractériser. En utilisant les protéines liées aux Systèmes de Transmission de l’Information Génétique (STIG) comme variables descriptives des éléments génomiques bactériens (ou réplicons), une étude globale de génomique comparative a été conduite sur l’ensemble des génomes bactériens disponibles. A travers l’analyse de l’information contenue dans ce jeu de données par différentes approches analytiques, il apparait que les STIG constituent des marqueurs pertinents de l’état d’intégration des réplicons dans le génome stable, ainsi que de leur origine évolutive, et que les Réplicons Extra-Chromosomiques Essentiels (RECE) témoignent de la diversité des mécanismes génétiques et des processus évolutifs permettant l’intégration de réplicons dans le génome stable, attestant ainsi de la continuité du matériel génomique. / The genome of bacteria is classically separated into essential, stable and slow evolving replicons (chromosomes) and accessory, mobile and rapidly evolving replicons (plasmids). This paradigm is being questioned since the discovery of extra-chromosomal essential replicons (ECERs), be they called ”megaplasmids”, ”secondary chromosomes” or ”chromids”, which possess both chromosomal and plasmidic features. These ECERs are found in diverse lineages across the bacterial phylogeny and are generally believed to be modified plasmids. However, their true nature and the mechanisms permitting their integration within the sable genome are yet to be formally determined. The relationships between replicons, with reference to their genetic information inheritance systems (GIIS), were explored under the assumption that the inheritance of ECERs is integrated to the cell cycle and highly constrained in contrast to that of standard plasmids. A global comparative genomics analysis including all available of complete bacterial genome sequences, was performed using GIIS functional homologues as parameters and applying several analytical procedures. GIIS proved appropriate in characterizing the level of integration within the stable genome, as well as the origins, of the replicons. The study of ECERs thus provides clues to the genetic mechanisms and evolutionary processes involved in the replicon stabilization into the essential genome and the continuity of the genomic material.
|
Page generated in 0.054 seconds