• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Méthodes bioinformatiques pour l'analyse de données de séquençage dans le contexte du cancer / Bioinformatics methods for cancer sequencing data analysis

Rudewicz, Justine 30 June 2017 (has links)
Le cancer résulte de la prolifération excessive de cellules qui dérivent toutes de la même cellule initiatrice et suivent un processus Darwinien de diversification et de sélection. Ce processus est défini par l'accumulation d'altérations génétiques et épigénétiques dont la caractérisation est un élément majeur pour pouvoir proposer une thérapie ciblant spécifiquement les cellules tumorales. L'avènement des nouvelles technologies de séquençage haut débit permet cette caractérisation à un niveau moléculaire. Cette révolution technologique a entraîné le développement de nombreuses méthodes bioinformatiques. Dans cette thèse, nous nous intéressons particulièrement au développement de nouvelles méthodes computationnelles d'analyse de données de séquençage d'échantillons tumoraux permettant une identification précise d'altérations spécifiques aux tumeurs et une description fine des sous populations tumorales. Dans le premier chapitre, il s'agît d'étudier des méthodes d'identification d'altérations ponctuelles dans le cadre de séquençage ciblé, appliquées à une cohorte de patientes atteintes du cancer du sein. Nous décrivons deux nouvelles méthodes d'analyse, chacune adaptée à une technologie de séquençage, spécifiquement Roche 454 et Pacifique Biosciences.Dans le premier cas, nous avons adapté des approches existantes au cas particulier de séquences de transcrits. Dans le second cas, nous avons été confronté à un bruit de fond élevé entraînant un fort taux de faux positifs lors de l'utilisation d'approches classiques. Nous avons développé une nouvelle méthode, MICADo, basée sur les graphes de De Bruijn et permettant une distinction efficace entre les altérations spécifiques aux patients et les altérations communes à la cohorte, ce qui rend les résultats exploitables dans un contexte clinique. Le second chapitre aborde l'identification d'altérations de nombre de copies. Nous décrivons l'approche mise en place pour leur identification efficace à partir de données de très faible couverture. L'apport principal de ce travail consiste en l'élaboration d'une stratégie d'analyse statistique afin de mettre en évidence des changements locaux et globaux au niveau du génome survenus durant le traitement administré à des patientes atteintes de cancer du sein. Notre méthode repose sur la construction d'un modèle linéaire permettant d'établir des scores de différences entre les échantillons avant et après traitement. Dans le troisième chapitre, nous nous intéressons au problème de reconstruction clonale. Cette problématique récente est actuellement en plein essor, mais manque cependant d'un cadre formel bien établi. Nous proposons d'abord une formalisation du problème de reconstruction clonale. Ensuite nous utilisons ce formalisme afin de mettre en place une méthode basée sur les modèles de mélanges Gaussiens. Cette méthode utilise les altérations ponctuelles et de nombre de copies - comme celles abordées dans les deux chapitres précédents - afin de caractériser et quantifier les différentes populations clonales présentes dans un échantillon tumoral. / Cancer results from the excessive proliferation of cells decending from the same founder cell and following a Darwinian process of diversification and selection. This process is defined by the accumulation of genetic and epigenetic alterations whose characterization is a key element for establishing a therapy that would specifically target tumor cells. The advent of new high-throughput sequencing technologies enables this characterization at the molecular level. This technological revolution has led to the development of numerous bioinformatics methods. In this thesis, we are particularly interested in the development of new computational methods for the analysis of sequencing data of tumor samples allowing precise identification of tumor-specific alterations and an accurate description of tumor subpopulations. In the first chapter, we explore methods for identifying single nucleotide alterations in targeted sequencing data and apply them to a cohort of breast cancer patients. We introduce two new methods of analysis, each tailored to a particular sequencing technology, namely Roche 454 and Pacific Biosciences. In the first case, we adapted existing approaches to the particular case of transcript sequencing. In the second case, when using conventional approaches, we were confronted with a high background noise resulting in a high rate of false positives. We have developed a new method, MICADo, based on the De Bruijn graphs and making possible an effective distinction between patient-specific alterations and alterations common to the cohort, which makes the results usable in a clinical context. Second chapter deals with the identification of copy number alterations. We describe the approach put in place for their efficient identification from very low coverage data. The main contribution of this work is the development of a strategy for statistical analysis in order to emphasise local and global changes in the genome that occurred during the treatment administered to patients with breast cancer. Our method is based on the construction of a linear model to establish scores of differences between samples before and after treatment. In the third chapter, we focus on the problem of clonal reconstruction. This problem has recently gathered a lot of interest, but it still lacks a well-established formal framework. We first propose a formalization of the clonal reconstruction problem. Then we use this formalism to put in place a method based on Gaussian mixture models. Our method uses single nucleotide and copy number alterations - such as those discussed in the previous two chapters - to characterize and quantify different clonal populations present in a tumor sample.
2

Vers une cartographie fine des polymorphismes liés à la résistance aux antimicrobiens / Fine mapping of antibiotic resistance determinants

Jaillard Dancette, Magali 12 December 2018 (has links)
Mieux comprendre les mécanismes de la résistance aux antibiotique est un enjeu important dans la lutte contre les maladies infectieuses, qui fait face à la propagation de bactéries multi-résistantes. Les études d'association à l'échelle des génomes sont des outils puissants pour explorer les polymorphismes liés aux variations phénotypiques dans une population. Leur cadre méthodologique est très documenté pour les eucaryotes, mais leur application aux bactéries est très récente. Durant cette thèse, j'ai cherché à rendre ces outils mieux adaptés aux génomes plastiques des bactéries, principalement en travaillant sur la représentation des variations génétiques. En effet, parce que les bactéries ont la capacité à échanger du matériel génétique avec leur environnement, leurs génomes peuvent être trop différents au sein d'une espèce pour être alignés contre une référence. La description des variations par des fragments de séquence de longueur k, les k-mers, offre la flexibilité nécessaire mais ne permet pas une interprétation directe des résultats obtenus. La méthode mise au point teste l'association de ces k-mers avec le phénotype, et s'appuie sur un graphe de De Bruijn pour permettre la visualisation du contexte génomique des k-mers identifiés par le test, sous forme de graphes. Cette vue synthétique renseigne sur la nature de la séquence identifiée: il peut par exemple s'agir de polymorphisme local dans un gène ou de l'acquisition d'un gène dans un plasmide. Le type de variant représenté dans un graphe peut être prédit avec une bonne performance à partir de descripteurs du graphe, rendant plus opérationnelles les approches par k-mers pour l'étude des génomes bactériens / The emergence and spread of multi-drug resistance has become a major worldwide public health concern, calling for better understanding of the underlying resistance mechanisms. Genome-wide association studies are powerful tools to finely map the genetic polymorphism linked to the phenotypic variability observed in a population. However well documented for eukaryotic genome analysis, these studies were only recently applied to prokaryota.Through this PhD project, I searched how to better adapt these tools to the highly plastic bacterial genomes, mainly by working on the representation of the genetic variations in these genomes. Indeed, because the bacteria have the faculty to acquire genetic material by a means other than direct inheritance from a parent cell, their genomes can differ too much within a species to be aligned against a reference. A representation using sequence fragments of length k - the so-called k-mers - offers the required flexibility but generates redundancy and does not allow for a direct interpretation of the identified associations. The method we set up tests the association of these k-mers with the phenotype, and takes advantage of a De Bruijn graph (DBG) built over all genomes to remove the local redundancy of k-mers, and offer a visualisation of the genomic context of the k-mers identified by the test. This synthetic view as DBG subgraphs informs on the nature of the identified sequence: e.g. local polymorphism in a gene or gene acquired through a plasmid. The type of variant can be predicted correctly in 96% of the cases from descriptors of the subgraphs, providing a tractable framework for k-mer-based association studies
3

De novo algorithms to identify patterns associated with biological events in de Bruijn graphs built from NGS data / Algorithmes de novo pour l'identification de motifs associés à des événements biologiques dans les graphes de De Bruijn construits à partir de données NGS

Ishi Soares de Lima, Leandro 23 April 2019 (has links)
L'objectif principal de cette thèse est le développement, l'amélioration et l'évaluation de méthodes de traitement de données massives de séquençage, principalement des lectures de séquençage d'ARN courtes et longues, pour éventuellement aider la communauté à répondre à certaines questions biologiques, en particulier dans les contextes de transcriptomique et d'épissage alternatif. Notre objectif initial était de développer des méthodes pour traiter les données d'ARN-seq de deuxième génération à l'aide de graphes de De Bruijn afin de contribuer à la littérature sur l'épissage alternatif, qui a été exploré dans les trois premiers travaux. Le premier article (Chapitre 3, article [77]) a exploré le problème que les répétitions apportent aux assembleurs de transcriptome si elles ne sont pas correctement traitées. Nous avons montré que la sensibilité et la précision de notre assembleur local d'épissage alternatif augmentaient considérablement lorsque les répétitions étaient formellement modélisées. Le second (Chapitre 4, article [11]) montre que l'annotation d'événements d'épissage alternatifs avec une seule approche conduit à rater un grand nombre de candidats, dont beaucoup sont importants. Ainsi, afin d'explorer de manière exhaustive les événements d'épissage alternatifs dans un échantillon, nous préconisons l'utilisation combinée des approches mapping-first et assembly-first. Étant donné que nous avons une énorme quantité de bulles dans les graphes de De Bruijn construits à partir de données réelles d'ARN-seq, qui est impossible à analyser dans la pratique, dans le troisième travail (Chapitre 5, articles [1, 2]), nous avons exploré théoriquement la manière de représenter efficacement et de manière compacte l'espace des bulles via un générateur des bulles. L'exploration et l'analyse des bulles dans le générateur sont réalisables dans la pratique et peuvent être complémentaires aux algorithmes de l'état de l'art qui analysent un sous-ensemble de l'espace des bulles. Les collaborations et les avancées sur la technologie de séquençage nous ont incités à travailler dans d'autres sous-domaines de la bioinformatique, tels que: études d'association à l'échelle des génomes, correction d'erreur et assemblage hybride. Notre quatrième travail (Chapitre 6, article [48]) décrit une méthode efficace pour trouver et interpréter des unitigs fortement associées à un phénotype, en particulier la résistance aux antibiotiques, ce qui rend les études d'association à l'échelle des génomes plus accessibles aux panels bactériens, surtout ceux qui contiennent des bactéries plastiques. Dans notre cinquième travail (Chapitre 7, article [76]), nous évaluons dans quelle mesure les méthodes existantes de correction d'erreur ADN à lecture longue sont capables de corriger les lectures longues d'ARN-seq à taux d'erreur élevé. Nous concluons qu'aucun outil ne surpasse tous les autres pour tous les indicateurs et est le mieux adapté à toutes les situations, et que le choix devrait être guidé par l'analyse en aval. Les lectures longues d'ARN-seq fournissent une nouvelle perspective sur la manière d'analyser les données transcriptomiques, puisqu'elles sont capables de décrire les séquences complètes des ARN messagers, ce qui n'était pas possible avec des lectures courtes dans plusieurs cas, même en utilisant des assembleurs de transcriptome de l'état de l'art. En tant que tel, dans notre dernier travail (Chapitre 8, article [75]), nous explorons une méthode hybride d'assemblage d'épissages alternatifs qui utilise des lectures à la fois courtes et longues afin de répertorier les événements d'épissage alternatifs de manière complète, grâce aux lectures courtes, guidé par le contexte intégral fourni par les lectures longues / The main goal of this thesis is the development, improvement and evaluation of methods to process massively sequenced data, mainly short and long RNA-sequencing reads, to eventually help the community to answer some biological questions, especially in the transcriptomic and alternative splicing contexts. Our initial objective was to develop methods to process second-generation RNA-seq data through de Bruijn graphs to contribute to the literature of alternative splicing, which was explored in the first three works. The first paper (Chapter 3, paper [77]) explored the issue that repeats bring to transcriptome assemblers if not addressed properly. We showed that the sensitivity and the precision of our local alternative splicing assembler increased significantly when repeats were formally modeled. The second (Chapter 4, paper [11]), shows that annotating alternative splicing events with a single approach leads to missing out a large number of candidates, many of which are significant. Thus, to comprehensively explore the alternative splicing events in a sample, we advocate for the combined use of both mapping-first and assembly-first approaches. Given that we have a huge amount of bubbles in de Bruijn graphs built from real RNA-seq data, which are unfeasible to be analysed in practice, in the third work (Chapter 5, papers [1, 2]), we explored theoretically how to efficiently and compactly represent the bubble space through a bubble generator. Exploring and analysing the bubbles in the generator is feasible in practice and can be complementary to state-of-the-art algorithms that analyse a subset of the bubble space. Collaborations and advances on the sequencing technology encouraged us to work in other subareas of bioinformatics, such as: genome-wide association studies, error correction, and hybrid assembly. Our fourth work (Chapter 6, paper [48]) describes an efficient method to find and interpret unitigs highly associated to a phenotype, especially antibiotic resistance, making genome-wide association studies more amenable to bacterial panels, especially plastic ones. In our fifth work (Chapter 7, paper [76]), we evaluate the extent to which existing long-read DNA error correction methods are capable of correcting high-error-rate RNA-seq long reads. We conclude that no tool outperforms all the others across all metrics and is the most suited in all situations, and that the choice should be guided by the downstream analysis. RNA-seq long reads provide a new perspective on how to analyse transcriptomic data, since they are able to describe the full-length sequences of mRNAs, which was not possible with short reads in several cases, even by using state-of-the-art transcriptome assemblers. As such, in our last work (Chapter 8, paper [75]) we explore a hybrid alternative splicing assembly method, which makes use of both short and long reads, in order to list alternative splicing events in a comprehensive manner, thanks to short reads, guided by the full-length context provided by the long reads

Page generated in 0.0493 seconds