• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Protein-protein Interactions of Bacterial Topoisomerase I

Banda, Srikanth 29 June 2017 (has links)
Protein-protein interactions (PPIs) are essential features of cellular processes including DNA replication, transcription, translation, recombination, and repair. In my study, the protein interactions of bacterial DNA topoisomerase I, an essential enzyme, were investigated. The topoisomerase I in bacteria relaxes excess negative supercoiling on DNA and maintains genomic stability. Investigating the PPI network of DNA topoisomerase I can further our understanding of the various functional roles of this enzyme. My study is focused on topoisomerase I of Escherichia coli and Mycobacterium smegmatis. Firstly, we have explored the biochemical mechanisms for an interaction between RNA Polymerase, and topoisomerase I in E. coli. Molecular docking and molecular dynamic simulations have predicted that the interactions are mediated through electrostatic, and hydrogen bonding. The predicted Lysine residues (K627, K664) of topoisomerase I that are involved in the electrostatic interactions were mutated to Alanine, and its effect on the binding efficiency with RNA polymerase was reported. In a separate study, PPI partners of topoisomerase I in mycobacteria were identified. Knowledge gained from the study can provide valuable insights into the physiological functions of a validated drug target, DNA topoisomerase I, in pathogenic mycobacteria. Co-immunoprecipitation and pull-down assays were coupled to mass spectrometry for identification of the protein partners of mycobacterial topoisomerase I. The study has identified RNA polymerase, and putative helicases (DEAD/DEAH BOX helicases) as potential protein partners of mycobacterial topoisomerase I. My results indicated that the tail region of the CTD-topoisomerase I was required for direct physical interaction with the RNAP beta’ subunit. My studies have also verified the physiological relevance of the topoisomerase I - RNA polymerase interactions for survival under antibiotic, and oxidative stress. Lastly, I report a direct physical interaction between E. coli topoisomerase I and RecA by pull-down assays. Previous studies have shown that RecA, a DNA repair protein, can stimulate the relaxation activity of E. coli topoisomerase I. Our new results showed that the stimulatory effect can be attributed to the physical interaction of topoisomerase I with RecA.
2

Les R-loops et leurs conséquences sur l'expression génique chez Escherichia coli.

Baaklini, Imad 02 1900 (has links)
Des variations importantes du surenroulement de l’ADN peuvent être générées durant la phase d’élongation de la transcription selon le modèle du « twin supercoiled domain ». Selon ce modèle, le déplacement du complexe de transcription génère du surenroulement positif à l’avant, et du surenroulement négatif à l’arrière de l’ARN polymérase. Le rôle essentiel de la topoisomérase I chez Escherichia coli est de prévenir l’accumulation de ce surenroulement négatif générée durant la transcription. En absence de topoisomérase I, l’accumulation de ce surenroulement négatif favorise la formation de R-loops qui ont pour conséquence d’inhiber la croissance bactérienne. Les R-loops sont des hybrides ARN-ADN qui se forment entre l’ARN nouvellement synthétisé et le simple brin d’ADN complémentaire. Dans les cellules déficientes en topoisomérase I, des mutations compensatoires s’accumulent dans les gènes qui codent pour la gyrase, réduisant le niveau de surenroulement négatif du chromosome et favorisant la croissance. Une des ces mutations est une gyrase thermosensible qui s’exprime à 37 °C. La RNase HI, une enzyme qui dégrade la partie ARN d’un R-loop, peut aussi restaurer la croissance en absence de topoisomérase I lorsqu’elle est produite en très grande quantité par rapport à sa concentration physiologique. En présence de topoisomérase I, des R-loops peuvent aussi se former lorsque la RNase HI est inactive. Dans ces souches mutantes, les R-loops induisent la réponse SOS et la réplication constitutive de l’ADN (cSDR). Dans notre étude, nous montrons comment les R-loops formés en absence de topoisomérase I ou RNase HI peuvent affecter négativement la croissance des cellules. Lorsque la topoisomérase I est inactivée, l’accumulation d’hypersurenroulement négatif conduit à la formation de nombreux R-loops, ce qui déclenche la dégradation de l’ARN synthétisé. Issus de la dégradation de l’ARNm de pleine longueur, des ARNm incomplets et traductibles s’accumulent et causent l’inhibition de la synthèse protéique et de la croissance. Le processus par lequel l’ARN est dégradé n’est pas encore complètement élucidé, mais nos résultats soutiennent fortement que la RNase HI présente en concentration physiologique est responsable de ce phénotype. Chose importante, la RNase E qui est l’endoribonuclease majeure de la cellule n’est pas impliquée dans ce processus, et la dégradation de l’ARN survient avant son action. Nous montrons aussi qu’une corrélation parfaite existe entre la concentration de RNase HI, l’accumulation d’hypersurenroulement négatif et l’inhibition de la croissance bactérienne. Lorsque la RNase HI est en excès, l’accumulation de surenroulement négatif est inhibée et la croissance n’est pas affectée. L’inverse se produit Lorsque la RNase HI est en concentration physiologique. En limitant l’accumulation d’hypersurenroulement négatif, la surproduction de la RNase HI prévient alors la dégradation de l’ARN et permet la croissance. Quand la RNase HI est inactivée en présence de topoisomérase I, les R-loops réduisent le niveau d’expression de nombreux gènes, incluant des gènes de résistance aux stress comme rpoH et grpE. Cette inhibition de l’expression génique n’est pas accompagnée de la dégradation de l’ARN contrairement à ce qui se produit en absence de topoisomérase I. Dans le mutant déficient en RNase HI, la diminution de l’expression génique réduit la concentration cellulaire de différentes protéines, ce qui altère négativement le taux de croissance et affecte dramatiquement la survie des cellules exposées aux stress de hautes températures et oxydatifs. Une inactivation de RecA, le facteur essentiel qui déclenche la réponse SOS et le cSDR, ne restaure pas l’expression génique. Ceci démontre que la réponse SOS et le cSDR ne sont pas impliqués dans l’inhibition de l’expression génique en absence de RNase HI. La croissance bactérienne qui est inhibée en absence de topoisomérase I, reprend lorsque l’excès de surenroulement négatif est éliminé. En absence de RNase HI et de topoisomérase I, le surenroulement négatif est très relaxé. Il semble que la réponse cellulaire suite à la formation de R-loops, soit la relaxation du surenroulement négatif. Selon le même principe, des mutations compensatoires dans la gyrase apparaissent en absence de topoisomérase I et réduisent l’accumulation de surenroulement négatif. Ceci supporte fortement l’idée que le surenroulement négatif joue un rôle primordial dans la formation de R-loop. La régulation du surenroulement négatif de l’ADN est donc une tâche essentielle pour la cellule. Elle favorise notamment l’expression génique optimale durant la croissance et l’exposition aux stress, en limitant la formation de R-loops. La topoisomérase I et la RNase HI jouent un rôle important et complémentaire dans ce processus. / Important fluctuations of DNA supercoiling occur during transcription in the frame of the “twin supercoiled domain” model. In this model, transcription elongation generates negative and positive supercoiling respectively, upstream and downstream of the moving RNA polymerase. The major role of bacterial topoisomerase I is to prevent the accumulation of transcription-induced negative supercoiling. In its absence, the accumulation of negative supercoiling triggers R-loop formation which inhibits bacterial growth. R-loops are DNA/RNA hybrids formed during transcription when the nascent RNA hybridizes with the template strand thus, leaving the non-template strand single stranded. In cells lacking DNA topoisomerase I, a constant and selective pressure for the acquisition of compensatory mutations in gyrase genes reduces the negative supercoiling level of the chromosome and allows growth. One of these mutations is a thermosensitive gyrase expressed at 37 °C. The overexpression of RNase HI, an enzyme that degrades the RNA moiety of an R-loop, is also able to correct growth inhibition in absence of topoisomerase I. In the presence of topoisomerase I, R-loops can also form when RNase HI is lacking. In these mutants, R-loop formation induces SOS and constitutive stable DNA replication (cSDR). In our study, we show how R-loops formed in cells lacking topoisomerase I or RNase HI can affect bacterial growth. When topoisomerase I is inactivated, the accumulation of hypernegative supercoiling inhibits growth by causing extensive R-loop formation which, in turn, can lead to RNA degradation. As a result of RNA degradation, the accumulation of truncated and functional mRNA instead of full length ones, is responsible for protein synthesis inhibition that alters bacterial growth. The mechanism by which RNA is degraded is not completely clear but our results strongly suggest that RNase HI is involved in this process. More importantly, the major endoribonuclease, RNase E, is not involved in RNA degradation because RNA is degraded before its action. We show also that there is a perfect correlation between RNase HI concentration, the accumulation of hypernegative supercoiling and bacterial growth inhibition. When RNase HI is in excess, no accumulation of hypernegative supercoiling and growth inhibition are observed. The opposite is true when RNase HI is at its wild type level. By preventing the accumulation of hypernegative supercoiling, the overproduction of RNase HI inhibits extensive R-loop formation and RNA degradation, thus, allowing growth. In absence of RNase HI (rnhA) and in presence of topoisomerase I, R-loops are also responsible for an inhibition in gene expression, including stress genes such as rpoH and grpE. The inhibition of gene expression is not related to RNA degradation as seen in absence of topoisomerase I but it is rather related to a reduction in gene expression. In absence of RNase HI, the diminution of genes expression is responsible for a reduction in the cellular level of proteins, which negatively affects bacterial growth and bacterial survival to heat shock and oxydative stress. Additional mutations in RecA, the protein that activates SOS and cSDR after R-loop formation in rnhA, do not correct this phenotype in rnhA. Thus, SOS and cSDR are not directly involved in the inhibition of gene expression in the absence of RNase HI. In absence of topoisomerase I, growth inhibition resumes when hypernegative supercoiling is reduced. When compared to wild type strains, DNA is very relaxed in absence of RNase HI and topoisomerase I. It seems that R-loop formation induces the relaxation of negatively supercoiled DNA. All this strongly supports the idea that negative supercoiling plays an important role in R-loop formation. Finally, our work shows how essential negative supercoiling regulation is for cell physiology. By preventing R-loop formation, regulation of negative supercoiling allows optimal gene expression, which is crucial for cellular growth and for stress survival. Both topoisomerase I and RNase HI play an important and complementary role in this process.
3

Les R-loops et leurs conséquences sur l'expression génique chez Escherichia coli

Baaklini, Imad 02 1900 (has links)
No description available.

Page generated in 0.1033 seconds