• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 425
  • 47
  • 7
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 528
  • 374
  • 372
  • 299
  • 218
  • 107
  • 103
  • 101
  • 92
  • 91
  • 70
  • 64
  • 54
  • 49
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation of bagasse-fired furnaces incorporating energy recycling to stabilise combustion /

Tait, Peter. January 2002 (has links) (PDF)
Thesis (M.E.) - University of Queensland, 2003. / Includes bibliography.
2

An investigation into the crushing and physical properties of sugar cane and bagasse

Bullock, Keith Joseph. Unknown Date (has links)
No description available.
3

Gasification characteristics of sugarcane bagasse

Anukam, Anthony Ike January 2013 (has links)
Sugarcane is a major crop in many countries. It is the most abundant lignocellulosic material in tropical countries such as South Africa. It is one of the plants with the highest bioconversion efficiency. The sugarcane crop is able to efficiently fix solar energy, yielding some 55 tons of dry matter per hectare of land annually. After harvest, the crop produces sugar juice and bagasse. Sugarcane bagasse is a residue that results from the crushing of sugarcane in the sugar industry. It is a renewable feedstock that can be used for power generation and manufacturing cellulosic ethanol. As biomass, sugarcane bagasse holds promise as a fuel source since it can produce more than enough electricity and heat energy to supply the needs of a common sugar factory. However, in the sugarcane industry the bagasse is currently burnt inefficiently in boilers that provide the heating for the industry. This project seeks to investigate the possibility of gasifying sugarcane bagasse as an efficient conversion technology. The investigation is necessary because fuel properties govern the gasifier design and ultimately, the gasification efficiency. Proximate and ultimate analysis of sugarcane bagasse was conducted after which the results were used to conduct a computer simulation of the mass and energy balance during gasification. The kinetic investigation undertaken through the TGA and DTG analyses revealed the activation energy and pre – exponential factor which were obtained by the model – free Kissinger method of kinetic analysis and were found to be 181.51 kJ/mol and 3.1 × 103/min respectively. The heating value of sugarcane bagasse was also measured and found to be 17.8 MJ/kg, which was used in the calculation of the conversion efficiency of the gasification process. Fuel properties, including moisture content and gasifier operating parameters were varied in order to determine optimum gasifier operating conditions that results in maximum conversion efficiency. The highest conversion efficiency was achieved at low moisture content after computer simulation of the gasification process. Moisture content also affected the volume of CO and H2 as the former decreases with increasing moisture content while the latter increases with increasing moisture content, accelerating the water – gas reaction. Scanning electron microscope fitted to an Energy dispersive X – ray spectroscopy was also used in order to view the shape and size distribution as well as determine the elemental composition of sugarcane bagasse. The results obtained established that the fuel properties and gasification conditions affect the conversion efficiency. During computer simulation, it was established that smaller particle size resulted in higher conversion efficiency. The smaller throat diameter also resulted in higher conversion efficiency. The throat angle of 25° also resulted in higher conversion efficiency. The temperature of input air was also found to be one of the major determining factors in terms of conversion efficiency. The dissertation presents the proximate and ultimate analysis results as well as the kinetic analysis results. The SEM/EDX analysis as well as the computer simulation results of the gasification process is also presented. The major contribution of this project was on the investigation of the gasification characteristics of sugarcane bagasse and the utilization of these in the design of a laboratory scale sugarcane bagasse gasifier with enhanced conversion efficiency through computer simulation.
4

Influence of fungal diversity and production of cellulolytic enzymes on decay of stored bagasse

Singh, Nashveer. January 2007 (has links)
Thesis (M.Sc. (Microbiology))--University of Pretoria, 2007. / Includes bibliographical references. Available on the Internet via the World Wide Web.
5

Investigation of spontaneous combustion phenomenology of bagasse and calcium hypochlorite

Halliburton, Brendan William. January 2002 (has links)
Thesis (PhD)--Macquarie University, Division of Environmental and Life Sciences, Department of Chemistry, 2002. / Bibliography: leaves 234-240.
6

Avaliação da tolerância de leveduras a um coquetel de inibidores que simula um hidrolisado de bagaço de cana quando adicionado a um meio sintético

Masiero, Maria Olivia Campos [UNESP] 25 February 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:23:06Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-02-25Bitstream added on 2014-06-13T19:29:02Z : No. of bitstreams: 1 masiero_moc_me_araiq_parcial.pdf: 159337 bytes, checksum: 4eb636fc3724eef5326659eceac0184f (MD5) Bitstreams deleted on 2015-07-02T12:36:09Z: masiero_moc_me_araiq_parcial.pdf,. Added 1 bitstream(s) on 2015-07-02T12:37:31Z : No. of bitstreams: 1 000685621_20190823.pdf: 159179 bytes, checksum: 87cac4ca086a6fd34d713ed1c92719c3 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A biomassa lignocelulósica contém quantidades significativas de fontes de carbono, sendo assim uma fonte de energia renovável. O presente trabalho teve como objetivo estabelecer meios líquidos e sólidos para o estudo dos efeitos dos inibidores presentes nos hidrolisados do bagaço de cana-de-açúcar e, por fim, estabelecer um coquetel de inibidores que permitisse o crescimento e a fermentação da levedura Saccharomyces cerevisiae no meio líquido estabelecido. Por esta razão, o conjunto de resultados deste trabalho compreende três partes. A primeira parte foi dedicada ao estabelecimento de meios sólidos e líquidos para comparação de leveduras na presença do inibidor mais abundante do hidrolisado do bagaço de cana, o ácido acético. No meio sólido YPD, as diferentes linhagens de leveduras ensaiadas sofreram menos os efeitos inibitórios deste ácido do que o meio sintético solidificado. Em meio líquido, foi necessário adicionar 2% de extrato de levedura para ativar o crescimento da levedura 63M, mas este efeito foi suprimido em presença de ácido acético. As variações em pH inicial (3,5 – 5,5) afetaram mais a produção de etanol do que a biomassa, ao passo que a viabilidade não variou. A segunda parte deste trabalho foi dedicada ao estabelecimento de um meio sintético que permitisse o crescimento e fermentação da linhagem 63M em presença de ácido acético. O aumento de 33% em biomassa na presença de 83 mmol/L de ácido acético foi devido à elevação da glicose (10-18%) e do inóculo (5-10 mg/mL). As concentrações crescentes e variadas de ácido acético em meio sintético foi utilizado para estudar seus efeitos sobre o crescimento (inibição acima de 50 mmol/L), a viabilidade (acima de 250 mmol/L) e a produção de etanol (acima de 83 mmol/L). As concentrações de outros inibidores... / Lignocellulosic biomass contains significant quantities of carbon sources, being a renewable energy source. The aim of the present work was to determine liquid and solid media for the study of the effects of inhibitors present in hydrolysates of sugarcane bagasse, and to establish a cocktail of inhibitors that allow the growth and the fermentation of the yeast Saccharomyces cerevisiae in the liquid medium established. Thus, the results of this work consist of three parts. The first part was dedicated to establishing solid and liquid media in order to compare different yeast strains in the presence of the most abundant inhibitor found in hydrolysates of sugarcane bagasse, the acetic acid. On YPD solid medium, this acid had less inhibitory effect on the different yeast strains tested than on the synthetic solid medium. In liquid medium, it was necessary to add 2% yeast extract to activate the growth of the strain 63M, but this effect was abolished in the presence of acetic acid. Variations in the initial pH (3.5 - 5.5) affected more the ethanol production than the biomass, while the viability was not influenced. The second part of this work was dedicated to establishing a synthetic medium that allows the growth and fermentation of the strain 63M in the presence of acetic acid. The 33% increase in biomass in the presence of 83 mmol/L acetic acid was due to the high glucose concentration (10-18%) and inoculum (5-10 mg/mL) used. The increasing concentrations of acetic acid in the synthetic medium were used to study its effects on growth (inhibition above 50 mmol/L), viability (over 250 mmol/L) and ethanol production (above 83 mmol/L). The concentrations of the other inhibitors had different limits of tolerance by the yeast... (Complete abstract click electronic access below)
7

Study of Effective Use of Sugarcane Residue as Eco-friendly Construction Materials for Disaster Prevention Structures / 環境に優しい建設材料としてのサトウキビ廃材の防災構造物への利用

Ribeiro, Bruno 23 March 2021 (has links)
学位プログラム名: 京都大学大学院思修館 / 京都大学 / 新制・課程博士 / 博士(総合学術) / 甲第23347号 / 総総博第20号 / 新制||総総||4(附属図書館) / 京都大学大学院総合生存学館総合生存学専攻 / (主査)教授 山敷 庸亮, 教授 山本 貴士, 教授 寶 馨, 教授 齋藤 敬 / 学位規則第4条第1項該当 / Doctor of Philosophy / Kyoto University / DFAM
8

Avaliação da tolerância de leveduras a um coquetel de inibidores que simula um hidrolisado de bagaço de cana quando adicionado a um meio sintético /

Masiero, Maria Olivia Campos. January 2011 (has links)
Orientador: Cecília Laluce / Coorientador: Karen F. de Oliveira. / Banca: Sandra Regina Pombeiro Sponchiado / Banca: Nilce maria Martinez Rossi / Resumo: A biomassa lignocelulósica contém quantidades significativas de fontes de carbono, sendo assim uma fonte de energia renovável. O presente trabalho teve como objetivo estabelecer meios líquidos e sólidos para o estudo dos efeitos dos inibidores presentes nos hidrolisados do bagaço de cana-de-açúcar e, por fim, estabelecer um coquetel de inibidores que permitisse o crescimento e a fermentação da levedura Saccharomyces cerevisiae no meio líquido estabelecido. Por esta razão, o conjunto de resultados deste trabalho compreende três partes. A primeira parte foi dedicada ao estabelecimento de meios sólidos e líquidos para comparação de leveduras na presença do inibidor mais abundante do hidrolisado do bagaço de cana, o ácido acético. No meio sólido YPD, as diferentes linhagens de leveduras ensaiadas sofreram menos os efeitos inibitórios deste ácido do que o meio sintético solidificado. Em meio líquido, foi necessário adicionar 2% de extrato de levedura para ativar o crescimento da levedura 63M, mas este efeito foi suprimido em presença de ácido acético. As variações em pH inicial (3,5 - 5,5) afetaram mais a produção de etanol do que a biomassa, ao passo que a viabilidade não variou. A segunda parte deste trabalho foi dedicada ao estabelecimento de um meio sintético que permitisse o crescimento e fermentação da linhagem 63M em presença de ácido acético. O aumento de 33% em biomassa na presença de 83 mmol/L de ácido acético foi devido à elevação da glicose (10-18%) e do inóculo (5-10 mg/mL). As concentrações crescentes e variadas de ácido acético em meio sintético foi utilizado para estudar seus efeitos sobre o crescimento (inibição acima de 50 mmol/L), a viabilidade (acima de 250 mmol/L) e a produção de etanol (acima de 83 mmol/L). As concentrações de outros inibidores... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Lignocellulosic biomass contains significant quantities of carbon sources, being a renewable energy source. The aim of the present work was to determine liquid and solid media for the study of the effects of inhibitors present in hydrolysates of sugarcane bagasse, and to establish a cocktail of inhibitors that allow the growth and the fermentation of the yeast Saccharomyces cerevisiae in the liquid medium established. Thus, the results of this work consist of three parts. The first part was dedicated to establishing solid and liquid media in order to compare different yeast strains in the presence of the most abundant inhibitor found in hydrolysates of sugarcane bagasse, the acetic acid. On YPD solid medium, this acid had less inhibitory effect on the different yeast strains tested than on the synthetic solid medium. In liquid medium, it was necessary to add 2% yeast extract to activate the growth of the strain 63M, but this effect was abolished in the presence of acetic acid. Variations in the initial pH (3.5 - 5.5) affected more the ethanol production than the biomass, while the viability was not influenced. The second part of this work was dedicated to establishing a synthetic medium that allows the growth and fermentation of the strain 63M in the presence of acetic acid. The 33% increase in biomass in the presence of 83 mmol/L acetic acid was due to the high glucose concentration (10-18%) and inoculum (5-10 mg/mL) used. The increasing concentrations of acetic acid in the synthetic medium were used to study its effects on growth (inhibition above 50 mmol/L), viability (over 250 mmol/L) and ethanol production (above 83 mmol/L). The concentrations of the other inhibitors had different limits of tolerance by the yeast... (Complete abstract click electronic access below) / Mestre
9

Adsorvente a partir de fuligem de bagaço de cana-de-açucar: obtenção e avaliação de desempenho. / Adsorbent from soot of sugar cane bagasse: obtaining and performance evaluating.

Wiebeck, Hélio 24 September 1993 (has links)
O trabalho apresenta a fuligem proveniente de queima de bagaço de cana-de-açúcar como um adsorvente e como matéria-prima alternativa na produção de adsorvente descorante. Atualmente, todas as industrias açucareiras, várias refinarias de açúcar e algumas industrias utilizam o bagaço de cana-de-açúcar como combustível de caldeira. Originando, nessa queima, uma quantidade razoável de um resíduo sólido, que e a fuligem. Foi obtido em escala de laboratório, uma fuligem suportada em uma matriz inorgânica de diatomito, bentônica e acido fosfórico. O sólido obtido foi ativado termicamente. Adsorventes foram caracterizados por: rendimento, ph, massa especifica, composição química elementar, porosidade e teor de umidade, cinzas, solúveis, insolúveis, voláteis. Foi também realizada uma avaliação de desempenho do adsorvente, por batelada (dispersão) e por processo continuo (coluna). Os resultados mostram que e viável a obtenção de um adsorvente de fuligem. Sendo o mesmo, similar ao carvão de ossos, em trabalhos de descoloramento de caldas de açúcar. A fuligem também apresenta um excelente poder de adsorção para fenol. / The work presents the fly ash from sugar cane bagasse burning as na adsorbent and alternative material to the production of colour-materials adsorbent. Nowadays, all the sugar industries, many sugar refineries and some other industries use the sugar cane bagasse as a boiler fuel. From this burning an available amount of solid waste, called fly ash as produced. We obtained in laboratory scale, fly-ash supported in a diatomite, bentonite and phosphoric acid inorganic matrix. The solid obtained, was thermal activated. Adsorbents were characterized by: yield; pH; specific weight density; chemical elementar composition; porosity; humidity; ash; solubles; insoluble and volatiles content. It was also carried out on adsorbent performance evaluation by batch (dispersion) and continuous (column) processes. The results showed that it is possible to obtain a fly-ash adsorbent which works as similar as bone-chair, in discolouring sugar liquors. Fly-ash is also an excellent adsorbent for phenol.
10

Investigations of Biomass Pretreatment and Submerged Fixed-bed Fermentation

Meysing, Daniel 2011 December 1900 (has links)
To improve the MixAlco process and biomass pretreatment, five studies were conducted. Three studies related to fermentation, whereas the other two investigated the effectiveness of shock tube pretreatment (STP) coupled with oxidative lime pretreatment (OLP). In the first study, the constant-selectivity assumption used in the continuum particle distribution model (CPDM) was determined to be invalid. During a 32-day batch fermentation, selectivity increased from 0.10 to 0.40 g acid/g non-acid volatile solid (NAVS) digested. Future revisions to CPDM should incorporate a non-constant selectivity term. In the second study, a revised procedure was developed to provide a more accurate determination of moisture content. Conventional drying at 105 degrees C allowed product acids to vaporize with water, which introduced errors. Using the revised procedure, calcium hydroxide or sodium hydroxide was added to samples at a concentration of 0.01 g base/g sample, which retained acids in the sample. The mass of additional retained material closely matched that of the additional retained acid. Three related studies involving biomass pretreatment were performed. In the first, recommended parameters for pretreating sugarcane bagasse with OLP and STP were determined. Recommended OLP parameters were 130 degrees C, 6.9-bar O2, and 2-h duration. The effects of solids concentration, liquid fill volume, particle size, type of shotgun shell, number of shocks, and pretreatment order were investigated. Liquid fill volume, particle size, type of shotgun shell, and pretreatment order were significant variables, whereas solids concentration and number of shocks were not. Recommended OLP parameters were used as a basis for an additional experiment. To simulate industrial-scale pile fermentation, fixed-bed batch fermentation of OLP + STP sugarcane bagasse was performed in 1-L PVC fermentors. Rubber mulch was used as a structural support material to prevent filter plugging, which had been reported in previous work. After 42 d, acid concentration reached 8 g/L with yield approximately 0.1 g acid/g NAVS fed. Poor fermentation performance was caused by short solid-liquid contact time and poor pH control. A third biomass pretreatment experiment investigated the potential of pretreated corn stover as a potential ruminant feed. Five samples (raw, OLP, STP, OLP + STP, and STP + OLP) were analyzed for composition and in vitro digestibility. STP followed by OLP increased neutral detergent fiber (NDF) digestibility from 49.3 to 79.0 g NDF digested/100 g NDF fed. On an organic matter basis, STP + OLP corn stover plus water-soluble extractives had a total digestible nutrients (TDN) of 74.9, nearly reaching corn grain at 88.1.

Page generated in 0.039 seconds