• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Statistická inference v modelech extrémních událostí / Stochastical inference in the model of extreme events

Dienstbier, Jan January 2011 (has links)
Title: Stochastical inference in the model of extreme events Author: Jan Dienstbier Department/Institute: Department of probability and mathematical statistics Supervisor of the doctoral thesis: Doc. RNDr. Jan Picek, CSc. Abstract: The thesis deals with extremal aspects of linear models. We provide a brief explanation of extreme value theory. The attention is then turned to linear models Yn×1 = Xn×pβp×1 + En×1 with the errors Ei ∼ F, i = 1, . . . , n fulfilling the do- main of attraction condition. We examine the properties of the regression quantiles of Koenker and Basset (1978) under this setting we develop theory dealing with extremal characteristics of linear models. Our methods are based on an approximation of the regression quantile process for α ∈ [0, 1] expanding older results of Gutenbrunner et al. (1993). Our result holds in [α∗ n, 1 − α∗ n] with a better rate of α∗ n → 0 than the other approximations described previously in the literature. Consecutively we provide an ap- proximation of the tails of regression quantile. The approximations of the tails enable to develop theory of the smooth functionals, which are used to establish a new class of estimates of extreme value index. We prove T(F−1 n (1 − knt/n)) is consistent and asymp- totically normal estimate of extreme for any T member of the class....
2

Modelos multinomiais multivariados aplicados em sequências de DNA / Multivariate multinomial models applied do DNA sequences

Cuyabano, Beatriz Castro Dias 17 August 2018 (has links)
Orientador: Hildete Prisco Pinheiro / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-17T18:30:16Z (GMT). No. of bitstreams: 1 Cuyabano_BeatrizCastroDias_M.pdf: 2595939 bytes, checksum: 953e397b509acd3e1a11de6f0e8c015b (MD5) Previous issue date: 2011 / Resumo: Modelos Multivariados são propostos para descrever a frequência de códons em sequências de DNA, bem como a ordem e frequência em que as bases nitrogenadas se apresentam em cada códon, considerando a dependência entre as bases dentro do códon. Modelos logísticos regressivos são utilizados com diferentes estruturas de dependência entre as posições do códon. Também, modelos baseados em uma extensão da representação de Bahadur para o caso multinomial são propostos para explicar dados multinomiais correlacionados. Uma aplicação desses modelos para o gene NADH4 do genoma mitocondrial humano é apresentada, e comparações desses modelos são feitas a partir de diferentes critérios como AIC, BIC e validação cruzada. Por fim, uma breve análise de diagnósticos é realizada para os modelos logísticos regressivo / Abstract: Multivariate models are proposed to describe the codons frequencies in DNA sequences, as well as the order and frequency that nucleotide bases have in each codon, considering the dependence among the bases inside a codon. Logistic regressive models are used with different structures of dependence among the three positions in a codon. Also, models based on a multinomial extension of the Bahadur's representation are proposed to explain correlated multinomial data. An application of these models to the NADH4 gene from human mitochondrial genome is presented, and model comparisons among them are done by different criteria such as AIC, BIC and cross validation. At last, a brief diagnostic analysis is done upon the logistic regressive models / Mestrado / Estatistica / Mestre em Estatística
3

Value at risk et expected shortfall pour des données faiblement dépendantes : estimations non-paramétriques et théorèmes de convergences / Value at risk and expected shortfall for weak dependent random variables : nonparametric estimations and limit theorems

Kabui, Ali 19 September 2012 (has links)
Quantifier et mesurer le risque dans un environnement partiellement ou totalement incertain est probablement l'un des enjeux majeurs de la recherche appliquée en mathématiques financières. Cela concerne l'économie, la finance, mais d'autres domaines comme la santé via les assurances par exemple. L'une des difficultés fondamentales de ce processus de gestion des risques est de modéliser les actifs sous-jacents, puis d'approcher le risque à partir des observations ou des simulations. Comme dans ce domaine, l'aléa ou l'incertitude joue un rôle fondamental dans l'évolution des actifs, le recours aux processus stochastiques et aux méthodes statistiques devient crucial. Dans la pratique l'approche paramétrique est largement utilisée. Elle consiste à choisir le modèle dans une famille paramétrique, de quantifier le risque en fonction des paramètres, et d'estimer le risque en remplaçant les paramètres par leurs estimations. Cette approche présente un risque majeur, celui de mal spécifier le modèle, et donc de sous-estimer ou sur-estimer le risque. Partant de ce constat et dans une perspective de minimiser le risque de modèle, nous avons choisi d'aborder la question de la quantification du risque avec une approche non-paramétrique qui s'applique à des modèles aussi généraux que possible. Nous nous sommes concentrés sur deux mesures de risque largement utilisées dans la pratique et qui sont parfois imposées par les réglementations nationales ou internationales. Il s'agit de la Value at Risk (VaR) qui quantifie le niveau de perte maximum avec un niveau de confiance élevé (95% ou 99%). La seconde mesure est l'Expected Shortfall (ES) qui nous renseigne sur la perte moyenne au delà de la VaR. / To quantify and measure the risk in an environment partially or completely uncertain is probably one of the major issues of the applied research in financial mathematics. That relates to the economy, finance, but many other fields like health via the insurances for example. One of the fundamental difficulties of this process of management of risks is to model the under lying credits, then approach the risk from observations or simulations. As in this field, the risk or uncertainty plays a fundamental role in the evolution of the credits; the recourse to the stochastic processes and with the statistical methods becomes crucial. In practice the parametric approach is largely used.It consists in choosing the model in a parametric family, to quantify the risk according to the parameters, and to estimate its risk by replacing the parameters by their estimates. This approach presents a main risk, that badly to specify the model, and thus to underestimate or over-estimate the risk. Based within and with a view to minimizing the risk model, we choose to tackle the question of the quantification of the risk with a nonparametric approach which applies to models as general as possible. We concentrate to two measures of risk largely used in practice and which are sometimes imposed by the national or international regulations. They are the Value at Risk (VaR) which quantifies the maximum level of loss with a high degree of confidence (95% or 99%). The second measure is the Expected Shortfall (ES) which informs about the average loss beyond the VaR.

Page generated in 0.1326 seconds