Spelling suggestions: "subject:"expected shortfall (ES)"" "subject:"expected bortfall (ES)""
1 |
Distribuição de funções de variáveis aleatórias dependentes e R-Vines cópulasMaluf, Yuri Sampaio 08 December 2015 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Estatística, 2015. / Submitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2016-03-22T19:46:38Z
No. of bitstreams: 1
2015_YuriSampaioMaluf.pdf: 4291479 bytes, checksum: 4a9954a7905294836d257652f0ce1753 (MD5) / Approved for entry into archive by Marília Freitas(marilia@bce.unb.br) on 2016-05-26T16:30:44Z (GMT) No. of bitstreams: 1
2015_YuriSampaioMaluf.pdf: 4291479 bytes, checksum: 4a9954a7905294836d257652f0ce1753 (MD5) / Made available in DSpace on 2016-05-26T16:30:44Z (GMT). No. of bitstreams: 1
2015_YuriSampaioMaluf.pdf: 4291479 bytes, checksum: 4a9954a7905294836d257652f0ce1753 (MD5) / Neste trabalho, estudamos a formulação da distribuição de funções de variáveis aleatórias contínuas dependentes. O mecanismo de modelagem da dependência é feita via funções cópulas. Dentre os resultados obtidos formulamos a expressão geral da distribuição da soma de n variáveis aleatórias dependentes. Expandimos a abordagem para a distribuição de outras funções de variáveis aleatórias tais como o quociente, produto e uma combinação convexa. Por meio das R-Vines Cópulas, obtivermos também a expressão da soma de n variáveis aleatórias em que cada componente é governada por um processo GARCH. A partir deste resultado, calculamos o Value-at-Risk (VaR) e Expected Shortfalls (ES) da soma dessas variáveis. Em função desta estrutura, as medidas de risco passam a adquirir um comportamento dinâmico. Ao final do trabalho exibimos algumas ilustrações numéricas via simulação de Monte Carlo. Apresentamos também uma aplicação com dados reais provenientes de bolsas de valores da América Latina. / In this thesis, we studied the distribution of function of dependents continuous random variables. The modeling dependencies structures are made via copula functions. We obtain the general expression of the distribution of the sum of n dependents random variables. This approach is expanded for other functions such as ratio, product and a convex combination. Using R-Vines Copulas, we also derive an expression of the sum of n dependents random variables, being each component governed by AR-GARCH process. From these results, we assess the Value-at-Risk (VaR) and Expected Shortfalls (ES) of the sum of these variables. According to this structure, the VaR takes a dynamic behavior. At the end of this thesis, we show some numerical illustrations via Monte Carlo simulation. An application with real data from Latin American stock markets is also presented.
|
2 |
Risk Management and Sustainability - A Study of Risk and Return in Portfolios With Different Levels of Sustainability / Finansiell riskhantering och hållbarhet - En studie om risk och avkastning i portföljer med olika nivåer av hållbarhetBorg, Magnus, Ternqvist, Lucas January 2023 (has links)
This thesis examines the risk profile of Electronically Traded Funds and the dependence of the ESG rating on risk. 527 ETFs with exposure globally were analyzed. Risk measures considered were Value-at-Risk and Expected Shortfall, while some other metrics of risk was used, such as the volatility, maximum drawdown, tail dependece, and copulas. Stress tests were conducted in order to test the resilience against market downturns. The ETFs were grouped by their ESG rating as well as by their carbon intensity. The results show that the lowest risk can be found for ETFs with either the lowest ESG rating or the highest. Generally, a higher ESG rating implies a lower risk, but without statistical significance in many cases. Further, ETFs with a higher ESG rating showed, on average, a lower maximum drawdown, a higher tail dependence, and more resilience in market downturns. Regarding volatility, the average was shown to be lower on average for ETFs with a higher ESG rating, but no statistical significance could be found. Interestingly, the results show that investing sustainably returns a better financial performance at a lower risk, thus going against the Capital Asset Pricing Model. / Denna studie undersöker riskprofilen för elektroniskt handlade fonder och sambandet mellan risk och hållbarhetsbetyg. 527 ETF:er med global exponering analyserades. De riskmått som användes var Value-at-Risk och Expected Shortfall, och några andra mått för risk användes, däribland volatilitet, största intradagsnedgång, samband i svansfördelning, och copulas. Stresstest utfördes för att testa motsåtndskraften i marknadsnedgångar. ETF:erna grupperades med hjälp av deras hållbarhetsbetyg och deras koldioxidintensitet. Resultatet visar att lägst risk finns i ETF:er med högst respektive lägst hållbarhetsbetyg. Generellt har ETF:er med högre hållbarhetsbetyg en lägre risk, med endast viss statistisk signifikans. Därtill har ETF:er med högre hållbarhetsbetyg, i genomsnitt, en lägre största intradagsnedgång, högre samband i fördelningssvansarna och är mer motståndskraftiga i marknadsnedgångar. Volatiliteten är i genomsnitt lägre desto högre hållbarhetsbetyget är, men detta resultat saknar statistisk signifikans. Ett intressant resultat är att om man investerar hållbart kan man få en högre avkastning med en lägre risk, vilket går emot Capital Asset Pricing Model.
|
3 |
Value at risk et expected shortfall pour des données faiblement dépendantes : estimations non-paramétriques et théorèmes de convergencesKabui, Ali 19 September 2012 (has links) (PDF)
Quantifier et mesurer le risque dans un environnement partiellement ou totalement incertain est probablement l'un des enjeux majeurs de la recherche appliquée en mathématiques financières. Cela concerne l'économie, la finance, mais d'autres domaines comme la santé via les assurances par exemple. L'une des difficultés fondamentales de ce processus de gestion des risques est de modéliser les actifs sous-jacents, puis d'approcher le risque à partir des observations ou des simulations. Comme dans ce domaine, l'aléa ou l'incertitude joue un rôle fondamental dans l'évolution des actifs, le recours aux processus stochastiques et aux méthodes statistiques devient crucial. Dans la pratique l'approche paramétrique est largement utilisée. Elle consiste à choisir le modèle dans une famille paramétrique, de quantifier le risque en fonction des paramètres, et d'estimer le risque en remplaçant les paramètres par leurs estimations. Cette approche présente un risque majeur, celui de mal spécifier le modèle, et donc de sous-estimer ou sur-estimer le risque. Partant de ce constat et dans une perspective de minimiser le risque de modèle, nous avons choisi d'aborder la question de la quantification du risque avec une approche non-paramétrique qui s'applique à des modèles aussi généraux que possible. Nous nous sommes concentrés sur deux mesures de risque largement utilisées dans la pratique et qui sont parfois imposées par les réglementations nationales ou internationales. Il s'agit de la Value at Risk (VaR) qui quantifie le niveau de perte maximum avec un niveau de confiance élevé (95% ou 99%). La seconde mesure est l'Expected Shortfall (ES) qui nous renseigne sur la perte moyenne au delà de la VaR.
|
4 |
Value at risk et expected shortfall pour des données faiblement dépendantes : estimations non-paramétriques et théorèmes de convergences / Value at risk and expected shortfall for weak dependent random variables : nonparametric estimations and limit theoremsKabui, Ali 19 September 2012 (has links)
Quantifier et mesurer le risque dans un environnement partiellement ou totalement incertain est probablement l'un des enjeux majeurs de la recherche appliquée en mathématiques financières. Cela concerne l'économie, la finance, mais d'autres domaines comme la santé via les assurances par exemple. L'une des difficultés fondamentales de ce processus de gestion des risques est de modéliser les actifs sous-jacents, puis d'approcher le risque à partir des observations ou des simulations. Comme dans ce domaine, l'aléa ou l'incertitude joue un rôle fondamental dans l'évolution des actifs, le recours aux processus stochastiques et aux méthodes statistiques devient crucial. Dans la pratique l'approche paramétrique est largement utilisée. Elle consiste à choisir le modèle dans une famille paramétrique, de quantifier le risque en fonction des paramètres, et d'estimer le risque en remplaçant les paramètres par leurs estimations. Cette approche présente un risque majeur, celui de mal spécifier le modèle, et donc de sous-estimer ou sur-estimer le risque. Partant de ce constat et dans une perspective de minimiser le risque de modèle, nous avons choisi d'aborder la question de la quantification du risque avec une approche non-paramétrique qui s'applique à des modèles aussi généraux que possible. Nous nous sommes concentrés sur deux mesures de risque largement utilisées dans la pratique et qui sont parfois imposées par les réglementations nationales ou internationales. Il s'agit de la Value at Risk (VaR) qui quantifie le niveau de perte maximum avec un niveau de confiance élevé (95% ou 99%). La seconde mesure est l'Expected Shortfall (ES) qui nous renseigne sur la perte moyenne au delà de la VaR. / To quantify and measure the risk in an environment partially or completely uncertain is probably one of the major issues of the applied research in financial mathematics. That relates to the economy, finance, but many other fields like health via the insurances for example. One of the fundamental difficulties of this process of management of risks is to model the under lying credits, then approach the risk from observations or simulations. As in this field, the risk or uncertainty plays a fundamental role in the evolution of the credits; the recourse to the stochastic processes and with the statistical methods becomes crucial. In practice the parametric approach is largely used.It consists in choosing the model in a parametric family, to quantify the risk according to the parameters, and to estimate its risk by replacing the parameters by their estimates. This approach presents a main risk, that badly to specify the model, and thus to underestimate or over-estimate the risk. Based within and with a view to minimizing the risk model, we choose to tackle the question of the quantification of the risk with a nonparametric approach which applies to models as general as possible. We concentrate to two measures of risk largely used in practice and which are sometimes imposed by the national or international regulations. They are the Value at Risk (VaR) which quantifies the maximum level of loss with a high degree of confidence (95% or 99%). The second measure is the Expected Shortfall (ES) which informs about the average loss beyond the VaR.
|
5 |
Analyzing value at risk and expected shortfall methods: the use of parametric, non-parametric, and semi-parametric modelsHuang, Xinxin 25 August 2014 (has links)
Value at Risk (VaR) and Expected Shortfall (ES) are methods often used to measure market risk. Inaccurate and unreliable Value at Risk and Expected Shortfall models can lead to underestimation of the market risk that a firm or financial institution is exposed to, and therefore may jeopardize the well-being or survival of the firm or financial institution during adverse markets. The objective of this study is therefore to examine various Value at Risk and Expected Shortfall models, including fatter tail models, in order to analyze the accuracy and reliability of these models.
Thirteen VaR and ES models under three main approaches (Parametric, Non-Parametric and Semi-Parametric) are examined in this study. The results of this study show that the proposed model (ARMA(1,1)-GJR-GARCH(1,1)-SGED) gives the most balanced Value at Risk results. The semi-parametric model (Extreme Value Theory, EVT) is the most accurate Value at Risk model in this study for S&P 500. / October 2014
|
Page generated in 0.0437 seconds