Spelling suggestions: "subject:"extreme value 1heory (EVT)"" "subject:"extreme value btheory (EVT)""
1 |
Improved estimation procedures for a positive extreme value indexBerning, Thomas Louw 12 1900 (has links)
Thesis (PhD (Statistics))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: In extreme value theory (EVT) the emphasis is on extreme (very small or very large) observations. The crucial parameter when making inferences about extreme quantiles, is called the extreme value index (EVI). This thesis concentrates on only the right tail of the underlying distribution (extremely large observations), and specifically situations where the EVI is assumed to be positive. A positive EVI indicates that the underlying distribution of the data has a heavy right tail, as is the case with, for example, insurance claims data.
There are numerous areas of application of EVT, since there are a vast number of situations in which one would be interested in predicting extreme events accurately. Accurate prediction requires accurate estimation of the EVI, which has received ample attention in the literature from a theoretical as well as practical point of view.
Countless estimators of the EVI exist in the literature, but the practitioner has little information on how these estimators compare. An extensive simulation study was designed and conducted to compare the performance of a wide range of estimators, over a wide range of sample sizes and distributions.
A new procedure for the estimation of a positive EVI was developed, based on fitting the perturbed Pareto distribution (PPD) to observations above a threshold, using Bayesian methodology. Attention was also given to the development of a threshold selection technique.
One of the major contributions of this thesis is a measure which quantifies the stability (or rather instability) of estimates across a range of thresholds. This measure can be used to objectively obtain the range of thresholds over which the estimates are most stable. It is this measure which is used for the purpose of threshold selection for the proposed PPD estimator.
A case study of five insurance claims data sets illustrates how data sets can be analyzed in practice. It is shown to what extent discretion can/should be applied, as well as how different estimators can be used in a complementary fashion to give more insight into the nature of the data and the extreme tail of the underlying distribution. The analysis is carried out from the point of raw data, to the construction of tables which can be used directly to gauge the risk of the insurance portfolio over a given time frame. / AFRIKAANSE OPSOMMING: Die veld van ekstreemwaardeteorie (EVT) is bemoeid met ekstreme (baie klein of baie groot) waarnemings. Die parameter wat deurslaggewend is wanneer inferensies aangaande ekstreme kwantiele ter sprake is, is die sogenaamde ekstreemwaarde-indeks (EVI). Hierdie verhandeling konsentreer op slegs die regterstert van die onderliggende verdeling (baie groot waarnemings), en meer spesifiek, op situasies waar aanvaar word dat die EVI positief is. ’n Positiewe EVI dui aan dat die onderliggende verdeling ’n swaar regterstert het, wat byvoorbeeld die geval is by versekeringseis data.
Daar is verskeie velde waar EVT toegepas word, aangesien daar ’n groot aantal situasies is waarin mens sou belangstel om ekstreme gebeurtenisse akkuraat te voorspel. Akkurate voorspelling vereis die akkurate beraming van die EVI, wat reeds ruim aandag in die literatuur geniet het, uit beide teoretiese en praktiese oogpunte.
’n Groot aantal beramers van die EVI bestaan in die literatuur, maar enige persoon wat die toepassing van EVT in die praktyk beoog, het min inligting oor hoe hierdie beramers met mekaar vergelyk. ’n Uitgebreide simulasiestudie is ontwerp en uitgevoer om die akkuraatheid van beraming van ’n groot verskeidenheid van beramers in die literatuur te vergelyk. Die studie sluit ’n groot verskeidenheid van steekproefgroottes en onderliggende verdelings in.
’n Nuwe prosedure vir die beraming van ’n positiewe EVI is ontwikkel, gebaseer op die passing van die gesteurde Pareto verdeling (PPD) aan waarnemings wat ’n gegewe drempel oorskrei, deur van Bayes tegnieke gebruik te maak. Aandag is ook geskenk aan die ontwikkeling van ’n drempelseleksiemetode.
Een van die hoofbydraes van hierdie verhandeling is ’n maatstaf wat die stabiliteit (of eerder onstabiliteit) van beramings oor verskeie drempels kwantifiseer. Hierdie maatstaf bied ’n objektiewe manier om ’n gebied (versameling van drempelwaardes) te verkry waaroor die beramings die stabielste is. Dit is hierdie maatstaf wat gebruik word om drempelseleksie te doen in die geval van die PPD beramer.
’n Gevallestudie van vyf stelle data van versekeringseise demonstreer hoe data in die praktyk geanaliseer kan word. Daar word getoon tot watter mate diskresie toegepas kan/moet word, asook hoe verskillende beramers op ’n komplementêre wyse ingespan kan word om meer insig te verkry met betrekking tot die aard van die data en die stert van die onderliggende verdeling. Die analise word uitgevoer vanaf die punt waar slegs rou data beskikbaar is, tot op die punt waar tabelle saamgestel is wat direk gebruik kan word om die risiko van die versekeringsportefeulje te bepaal oor ’n gegewe periode.
|
2 |
Analyzing value at risk and expected shortfall methods: the use of parametric, non-parametric, and semi-parametric modelsHuang, Xinxin 25 August 2014 (has links)
Value at Risk (VaR) and Expected Shortfall (ES) are methods often used to measure market risk. Inaccurate and unreliable Value at Risk and Expected Shortfall models can lead to underestimation of the market risk that a firm or financial institution is exposed to, and therefore may jeopardize the well-being or survival of the firm or financial institution during adverse markets. The objective of this study is therefore to examine various Value at Risk and Expected Shortfall models, including fatter tail models, in order to analyze the accuracy and reliability of these models.
Thirteen VaR and ES models under three main approaches (Parametric, Non-Parametric and Semi-Parametric) are examined in this study. The results of this study show that the proposed model (ARMA(1,1)-GJR-GARCH(1,1)-SGED) gives the most balanced Value at Risk results. The semi-parametric model (Extreme Value Theory, EVT) is the most accurate Value at Risk model in this study for S&P 500. / October 2014
|
3 |
Stochastic Modelling of Daily Peak Electricity Demand Using Value TheoryBoano - Danquah, Jerry 21 September 2018 (has links)
MSc (Statistics) / Department of Statistics / Daily peak electricity data from ESKOM, South African power utility company for the period, January
1997 to December 2013 consisting of 6209 observations were used in this dissertation. Since 1994, the
increased electricity demand has led to sustainability issues in South Africa. In addition, the electricity
demand continues to rise everyday due to a variety of driving factors. Considering this, if the electricity
generating capacity in South Africa does not show potential signs of meeting the country’s demands in
the subsequent years, this may have a significant impact on the national grid causing it to operate in a
risky and vulnerable state, leading to disturbances, such as load shedding as experienced during the past
few years. In particular, it is of greater interest to have sufficient information about the extreme value
of the stochastic load process in time for proper planning, designing the generation and distribution
system, and the storage devices as these would ensure efficiency in the electrical energy in order to
maintain discipline in the grid systems.
More importantly, electricity is an important commodity used mainly as a source of energy in industrial,
residential and commercial sectors. Effective monitoring of electricity demand is of great importance
because demand that exceeds maximum power generated will lead to power outage and load shedding.
It is in the light of this that the study seeks to assess the frequency of occurrence of extreme peak
electricity demand in order to come up with a full electricity demand distribution capable of managing
uncertainties in the grid system.
In order to achieve stationarity in the daily peak electricity demand (DPED), we apply a penalized
regression cubic smoothing spline to ensure the data is non-linearly detrended. The R package “evmix”
is used to estimate the thresholds using the bounded corrected kernel density plot. The non-linear
detrended datasets were divided into summer, spring, winter and autumn according to the calender
dates in the Southern Hemisphere for frequency analysis. The data is declustered using Ferro and
Segers automatic declustering method. The cluster maxima is extracted using the R package “evd”.
We fit Poisson GPD and stationary point process to the cluster maxima and the intensity function of
the point process which measures the frequency of occurrence of the daily peak electricity demand per
year is calculated for each dataset.
The formal goodness-of-fit test based on Cramer-Von Mises statistics and Anderson-Darling statistics
supported the null hypothesis that each dataset follow Poisson GPD (σ, ξ) at 5 percent level of
significance. The modelling framework, which is easily extensible to other peak load parameters, is
based on the assumption that peak power follows a Poisson process. The parameters of the developed
i
models were estimated using the Maximum Likelihood. The usual asymptotic properties underlying the
Poisson GPD were satisfied by the model. / NRF
|
Page generated in 0.0636 seconds