• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 12
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 31
  • 13
  • 11
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transformation and tempering of low-temperature bainite

Peet, Mathew James January 2010 (has links)
No description available.
2

Effect of boron on microstructure and mechanical properties of low carbon microalloyed steels

Lu, Yu, 1977- January 2007 (has links)
Low carbon bainitic steels microalloyed with Nb, Ti and V are widely used for the pipeline, construction and automobile industries because of their excellent combination of strength, toughness and weldability. Boron as another major alloying element has been also frequently used in this type of steels since the 1970s. The purpose of adding boron is to improve the hardenability of the steel by promoting bainite formation. / It has been realized that Boron can only be effective as a strengthening element when it is prevented from forming BN and/or Fe23(C, B) 6 precipitates. Therefore, Boron is always added together with other alloying elements which are stronger Nitride or Carbide formers, such as Ti and Nb. However, the formation of complex bainitic structures and the interaction with precipitates at industrial coiling temperature are not adequately understood. / In this study, the effect of boron on the microstructure and mechanical properties of a low carbon Nb-B steel was studied by a hot compression test (50% reduction at 850°C) followed by quenching samples into a salt bath. The microstructures of the tested samples were examined through optical microscopy and SEM; and the mechanical properties of these samples were investigated by micro-hardness and shear punch tests. / The results indicate that during thermo-mechanical controlled rolling (TCR), the final properties of the products not only depend on the applied deformation but also depend on the coiling temperature where phase transformation takes place. According to the investigation, two strengthening mechanisms are responsible for the strength of the steel at the coiling temperature: phase transformation and precipitation. Under optical microscopy, the microstructures of all specimens appear to be bainite in a temperature range from 350°C to 600°C without distinct differences. However, the SEM micrographs revealed that the microstructures at 550°C are very different from the microstructures transformed at the other holding temperatures. / Two strength peaks were observed at 350°C and 550°C in the temperature range studied. It is believed that the NbC precipitates are the main contributor to the peak strength observed at 550°C because the kinetics of NbC is quite rapid at this temperature. The strength peak at 350°C is mainly due to the harder bainitic phase, which formed at relatively lower temperature.
3

Effect of boron on microstructure and mechanical properties of low carbon microalloyed steels

Lu, Yu, 1977- January 2007 (has links)
No description available.
4

Some Effects of Microstructure on the Fracture of Steel

Osborne, Donald 05 1900 (has links)
<p> The fracture behaviour of a medium strength bainitic steel (SAE 4340 in the 11 as transformed and in the "warm rolled" condition) . and four carbon-manganese structural steels (in the hot rolled ferritepearlite condition) was investigated. The purpose was to isolate those features of the microstructure which exert control over the fracture properties. </p> <p> The detailed nature of the microstructure of the steels was studied with transmission and scanning electron microscopy, qualitative x-ray analysis and quantitative metallography. An attempt was made to correlate the fracture behaviour with the microstructure through models which relate to the structure properties to the unnotched tensile properties. </p> <p> In the case of the bainitic steels it was found that the carbide morphology, dislocation substructure and prior austentite grain size have the major influence on fracture properties. In contrast, the fracture properties of the structural steels were controlled by the volume fraction of inclusions and to some extent by the shape of the inclusions. </p> / Thesis / Master of Engineering (MEngr)
5

Mechanical Behavior of Carbide-Free Medium Carbon Bainitic Steel

ZHANG, XIAOXU January 2016 (has links)
Carbide-free bainitic (CFB) steels have gained increasing attention in recent years because of their excellent mechanical properties. The excellent combination of strength, ductility and toughness achieved in these steels is only matched by that of Maraging steels which cost 10 to 100 more than the carbide-free bainitic steels. The excellent mechanical behavior of CFB steel is mainly due its complex microstructure (bainitic ferrite, retained austenite and martensite) consisting of a high strength phase (ultra fine bainitic ferrite) and TRIP effect from retained austenite. Carbide formation is avoided due to high silicon content which suppresses cementite precipitation from austenite. The effect of bainitic transformation time on the microstructure and mechanical properties was investigated in a steel containing 0.4%C-2.8%Mn-1.8%Si. The microstructure was characterized using optical and transmission electron microscopy; it consisted of bainitic ferrite, martensite and retained austenite. This microstructure exhibited an extended elasto-plastic transition leading to very high initial work hardening rates. The work-hardening behavior was investigated in detail using strain-path reversals to measure the back-stresses. These measurements point to a kinematic hardening due to the mechanical contrast between the microstructural constituents. The strain aging effect at room temperature on the CFB steel was also been analyzed in great detail. The static strain aging effect at room temperature can not be overlooked in the carbide free bainitic steel. After isothermal bainite heat treatment, the yield strength of the material is increased by about 80MPa, and the ultimate tensile strength is improved by more than 100MPa after aging at room temperature for one week. This phenomenum could be related to the interactions between carbon atoms and the dislocations, grain boundaries and the redisual stresses. Examination of the fracture surfaces indicated that the prior austenite grain boundaries play an important role in the fracture process. A set of experiments were designed to study the effect of ausforming on the microstructure and mechanical properties of CFB steels. Based on its mechanical behavior under tensile tests and microstructural analysis by EBSD, the TRIP effect was contributing to the work hardening behavior. The changes in morphology and variant selection of the bainitic ferrite lath in the ausformed carbide free bainitic steel were also observed. A new set of chemistry was design with reduced carbon and manganese content to further improve the weldability and the reproducibility of the carbide free bainitic steel. / Thesis / Doctor of Philosophy (PhD)
6

Bainitic Kinetics

Tiley, John 09 1900 (has links)
<p> The growth kinetics of a plates and rods in B-brass have been calculated using a local equilibrium model. These are in good agreement with published experimental data. Along with this, quantitative microanalysis of deep etched specimens ts cited in support of the proposed diffusional mechanism for their formation. </p> <p> The model was also employed to calculated the growth rates of upper bainitic rods in the Fe-C-Nisystem at 400° C. A "phase diagram" was constructed in order to supply the effective supersaturations required by the local equilibrium model$ Lengthening rates were also calculated using a paraequilibrtum Interface condition. The experimental data were correctly predicted assuming the former case but failed at the "phase" boundary. It seems that a solute drag might well operate in this system. These results have provided some further indication of the part alloying elements play in the formation of the microstructural constituents of steel. </p> / Thesis / Master of Engineering (MEngr)
7

Investigação da resistência à corrosão de ferros fundidos com microestrutura bainítica e perlítica em meio de condensado sintético / Investigation of cast iron corrosion resistance with microstructure pearlitic and bainitic in a synthetic solution of the condensate

Costa, Sandra Matos Cordeiro 20 March 2014 (has links)
As indústrias que desenvolvem motores de combustão interna têm como preocupação atual prover motores que sejam cada vez menos poluentes, uma vez que a preocupação com a preservação do meio ambiente é intensa em todo o mundo. No entanto, com o desenvolvimento de novas tecnologias destinadas à redução das emissões, a condensação dos gases, provenientes da combustão, está sendo promovida dentro das câmaras de combustão dos veículos. Ácidos, como sulfúrico e nítrico, são gerados pela condensação destes gases. Esta condensação está associada às altas taxas de recirculação de gases de escape, conhecido como EGR, (termo em inglês para Exhaust Gas Recirculation). Consequentemente, problemas de corrosão nos componentes do motor estão aumentando, especialmente em camisas de cilindro em ferro fundido. Neste estudo, foi investigada a resistência à corrosão de dois ferros fundidos, um de microestrutura perlítica e o outro com microestrutura bainítica, em soluções de condensado natural e sintético de motores movidos a diesel. Os resultados foram associados às microestruturas e as composições químicas dos materiais estudados. Resultados de testes de imersão e ensaios de espectroscopia de impedância eletroquímica, bem como de curvas de polarização potenciodinâmicas, indicaram que os dois materiais não apresentam resistência à corrosão nos meios de ensaio adotados. O ataque intenso da matriz observado em ambos os materiais observado pelos ensaios de imersão, mostraram a atuação do mecanismo eletroquímico de corrosão por grafitização. Este mecanismo causa o ataque localizado e destrutivo da matriz de ferrita (-Fe), que funciona como anodo enquanto as grafitas atuam como áreas catódicas. Enquanto em meio ácido não foi possível observar uma diferenciação entre os dois tipos de ferros fundidos estudados, em meio neutro e aerado, o ferro fundido bainítico mostrou resistência à corrosão superior à do ferro fundido perlítico. / The industries that develop internal combustion engines have the current concern on providing less polluting engines, due to the worldwide apprehension on the environment preservation. However, with the development of new technologies to reduce emissions, condensation of gases from combustion is being promoted within the combustion chambers of vehicles. Acids, such as sulfuric and nitric, are generated by these gases condensation. This condensation is associated with high rates of exhaust gas recirculation, known as EGR, (the English term for Exhaust Gas Recirculation). Consequently, corrosion problems of engine components are increasing, especially in cylinder liners made with cast iron. In this study, the corrosion resistance of two cast irons, one with a pearlitic microstructure and the other with a bainitic one, has been investigated in the natural solution obtained by condensation of the gases from diesel engines combustion or in a synthetic solution that simulates the composition of the condensate gases. The results were associated with the chemical compositions and microstructures of the materials studied. The results of immersion tests and electrochemical impedance spectroscopy tests, as well as potentiodynamic polarization curves, indicated that both materials do not exhibit significant differences in their corrosion resistance in the solutions adopted for testing. The intense attack of the matrix observed during immersion tests showed the electrochemical corrosion mechanism of graphitization in both materials. This mechanism causes localized attack of the ferrite matrix ( -Fe), which acts as the anodic areas whereas the graphite act as the cathodic ones. Though in acid medium has not been possible to observe a distinction between the corrosion resistance of the two types of cast irons studied, in neutral and aerated environment, the bainitic cast iron showed higher corrosion resistance comparatively to the pearlitic cast iron .
8

Does Bainite form with or without diffusion? : The experimental and theoretical evidence

Kolmskog, Peter January 2013 (has links)
With the increased interest in bainitic steels, fundamental understanding of the bainite transformationis of major importance. Unfortunately, the research on bainite has been hampered by an oldcontroversy on its formation mechanism. Over the years two quite different theories have developedclaiming to describe the bainite transformation i.e. the diffusionless and the diffusion controlledtheory. In this thesis, attention is directed towards fundamental understanding of the bainitetransformation and both experimental and theoretical approaches are used in order to reveal its truenatureIn the first part of this thesis the symmetry in the Fe-C phase diagram is studied. It is based on ametallographic mapping of microstructures using light optical microscopy and scanning electronmicroscopy in a high carbon steel. The mapping revealed symmetries both with respect to temperatureand carbon content and an acicular eutectoid with cementite as the leading phase was found andidentified as inverse bainite. By accepting that all the eutectoid microstructures forms by diffusion ofcarbon, one may explain the existence of symmetries in the Fe-C phase diagram. Additional supportof its existence is obtained from an observation of symmetries in an alloyed steel. From the performedwork it was concluded that the existence of symmetries among the eutectoid microstructures fromaustenite supports the idea that bainite forms by a diffusion controlled transformation.In the second part the growth of bainite is considered. An experimental study using laser scanningconfocal microscopy was performed and growth rates of the transformation products from austenite ina high carbon, high chromium steel was analysed. The growth rate measurements reveals the kineticrelation between Widmanstätten cementite and the acicular eutectoid previously identified as inversebainite which confirms its existence and the conclusions drawn in the first part. In addition, in-situobservations of bainite formation below Ms provide additional support for the diffusion controlledtheory for bainite formation.The final part of the work is a study of the critical conditions for the formation of acicular ferrite.Based on experimental information found in the literature a thermodynamic analysis is performed inview of the two theories. The results demonstrate that the governing process for Fe-C alloys cannot bediffusionless but both kinds of processes can formally be used for predicting Bs temperatures for Fe-Calloys. / <p>QC 20130503</p>
9

Investigação da resistência à corrosão de ferros fundidos com microestrutura bainítica e perlítica em meio de condensado sintético / Investigation of cast iron corrosion resistance with microstructure pearlitic and bainitic in a synthetic solution of the condensate

Sandra Matos Cordeiro Costa 20 March 2014 (has links)
As indústrias que desenvolvem motores de combustão interna têm como preocupação atual prover motores que sejam cada vez menos poluentes, uma vez que a preocupação com a preservação do meio ambiente é intensa em todo o mundo. No entanto, com o desenvolvimento de novas tecnologias destinadas à redução das emissões, a condensação dos gases, provenientes da combustão, está sendo promovida dentro das câmaras de combustão dos veículos. Ácidos, como sulfúrico e nítrico, são gerados pela condensação destes gases. Esta condensação está associada às altas taxas de recirculação de gases de escape, conhecido como EGR, (termo em inglês para Exhaust Gas Recirculation). Consequentemente, problemas de corrosão nos componentes do motor estão aumentando, especialmente em camisas de cilindro em ferro fundido. Neste estudo, foi investigada a resistência à corrosão de dois ferros fundidos, um de microestrutura perlítica e o outro com microestrutura bainítica, em soluções de condensado natural e sintético de motores movidos a diesel. Os resultados foram associados às microestruturas e as composições químicas dos materiais estudados. Resultados de testes de imersão e ensaios de espectroscopia de impedância eletroquímica, bem como de curvas de polarização potenciodinâmicas, indicaram que os dois materiais não apresentam resistência à corrosão nos meios de ensaio adotados. O ataque intenso da matriz observado em ambos os materiais observado pelos ensaios de imersão, mostraram a atuação do mecanismo eletroquímico de corrosão por grafitização. Este mecanismo causa o ataque localizado e destrutivo da matriz de ferrita (-Fe), que funciona como anodo enquanto as grafitas atuam como áreas catódicas. Enquanto em meio ácido não foi possível observar uma diferenciação entre os dois tipos de ferros fundidos estudados, em meio neutro e aerado, o ferro fundido bainítico mostrou resistência à corrosão superior à do ferro fundido perlítico. / The industries that develop internal combustion engines have the current concern on providing less polluting engines, due to the worldwide apprehension on the environment preservation. However, with the development of new technologies to reduce emissions, condensation of gases from combustion is being promoted within the combustion chambers of vehicles. Acids, such as sulfuric and nitric, are generated by these gases condensation. This condensation is associated with high rates of exhaust gas recirculation, known as EGR, (the English term for Exhaust Gas Recirculation). Consequently, corrosion problems of engine components are increasing, especially in cylinder liners made with cast iron. In this study, the corrosion resistance of two cast irons, one with a pearlitic microstructure and the other with a bainitic one, has been investigated in the natural solution obtained by condensation of the gases from diesel engines combustion or in a synthetic solution that simulates the composition of the condensate gases. The results were associated with the chemical compositions and microstructures of the materials studied. The results of immersion tests and electrochemical impedance spectroscopy tests, as well as potentiodynamic polarization curves, indicated that both materials do not exhibit significant differences in their corrosion resistance in the solutions adopted for testing. The intense attack of the matrix observed during immersion tests showed the electrochemical corrosion mechanism of graphitization in both materials. This mechanism causes localized attack of the ferrite matrix ( -Fe), which acts as the anodic areas whereas the graphite act as the cathodic ones. Though in acid medium has not been possible to observe a distinction between the corrosion resistance of the two types of cast irons studied, in neutral and aerated environment, the bainitic cast iron showed higher corrosion resistance comparatively to the pearlitic cast iron .
10

Formation of Bainite in Steels

Yin, Jiaqing January 2017 (has links)
A systematic survey of morphology of bainite and proeutectoid ferrite was carried out in order to validate some old thoughts of bainite transformation mechanism. It is confirmed that there is no morphological evidence supporting a sharp change neither between Widmanstätten ferrite and the ferritic component of upper bainite, nor between upper and lower bainite. Both Widmanstätten ferrite and upper bainite start with precipitation of ferrite plates at a grain boundary while lower bainite starts with intragranular nucleation. In case of grain boundary nucleation, a group of parallel plates with same crystallographic orientation to the parent austenite grain forms. This process is followed by a second stage of decomposition of the austenitic interspace, which remained in between the primary ferrite plates. At high temperature, the austenitic interspace would either retain as thin slabs or transform into pearlite through a nodule originated from a grain boundary. At lower temperature, cementite precipitation starts to be possible and initiates simultaneous growth of ferrite. Generally, there are two modes of such eutectoid reactions operating in the second stage, i.e. a degenerate and a cooperative mode, which would lead to typical upper and lower bainite, respectively, in definition of carbides morphology. Both upper and lower bainite according to this definition are observed in a wide temperature range. A sharp temperature between the upper and lower bainite structures thus exists only when the definition is based on their nucleation sites, i.e. grain boundary nucleation for upper bainite and intragranular nucleation for lower bainite. Supposing that the first stage is a diffusionless process it should have a high growth rate to prevent carbon diffusion. This is not supported by lengthening rate obtained in current study as well as data from literature for Fe-C alloys. Finally, it is shown that the “subunits” play no role in the lengthening process of bainite. / <p>QC 20170523</p>

Page generated in 0.0512 seconds