Spelling suggestions: "subject:"faire category"" "subject:"paire category""
1 |
Strong Choquet Topologies on the Closed Linear Subspaces of Banach SpacesFarmer, Matthew Ray 08 1900 (has links)
In the study of Banach spaces, the development of some key properties require studying topologies on the collection of closed convex subsets of the space. The subcollection of closed linear subspaces is studied under the relative slice topology, as well as a class of topologies similar thereto. It is shown that the collection of closed linear subspaces under the slice topology is homeomorphic to the collection of their respective intersections with the closed unit ball, under the natural mapping. It is further shown that this collection under any topology in the aforementioned class of similar topologies is a strong Choquet space. Finally, a collection of category results are developed since strong Choquet spaces are also Baire spaces.
|
2 |
A Continuous, Nowhere-Differentiable Function with a Dense Set of Proper Local ExtremaHuggins, Mark C. (Mark Christopher) 12 1900 (has links)
In this paper, we use the following scheme to construct a continuous, nowhere-differentiable function 𝑓 which is the uniform limit of a sequence of sawtooth functions 𝑓ₙ : [0, 1] → [0, 1] with increasingly sharp teeth. Let 𝑋 = [0, 1] x [0, 1] and 𝐹(𝑋) be the Hausdorff metric space determined by 𝑋. We define contraction maps 𝑤₁ , 𝑤₂ , 𝑤₃ on 𝑋. These maps define a contraction map 𝑤 on 𝐹(𝑋) via 𝑤(𝐴) = 𝑤₁(𝐴) ⋃ 𝑤₂(𝐴) ⋃ 𝑤₃(𝐴). The iteration under 𝑤 of the diagonal in 𝑋 defines a sequence of graphs of continuous functions 𝑓ₙ. Since 𝑤 is a contraction map in the compact metric space 𝐹(𝑋), 𝑤 has a unique fixed point. Hence, these iterations converge to the fixed point-which turns out to be the graph of our continuous, nowhere-differentiable function 𝑓. Chapter 2 contains the background we will need to engage our task. Chapter 3 includes two results from the Baire Category Theorem. The first is the well known fact that the set of continuous, nowhere-differentiable functions on [0,1] is a residual set in 𝐶[0,1]. The second fact is that the set of continuous functions on [0,1] which have a dense set of proper local extrema is residual in 𝐶[0,1]. In the fourth and last chapter we actually construct our function and prove it is continuous, nowhere-differentiable and has a dense set of proper local extrema. Lastly we iterate the set {(0,0), (1,1)} under 𝑤 and plot its points. Any terms not defined in Chapters 2 through 4 may be found in [2,4]. The same applies to the basic properties of metric spaces which have not been explicitly stated. Throughout, we will let 𝒩 and 𝕽 denote the natural numbers and the real numbers, respectively.
|
3 |
Generic properties of extensionsSchnurr, Michael 10 December 2018 (has links)
Following the classical theory of Baire category results for sets of measure-preserving transformations, this work develops a theory for Baire category results for sets of measure-preserving extensions. First the case is considered where a measure space and a sub-algebra are fixed, and extensions are considered to be any measure-preserving transformations which leave this sub-algebra invariant. In the latter case, extensions of a fixed measure-preserving transformation are considered. In both cases, it is shown that the set of weakly mixing extensions form a dense, G-delta set
|
4 |
Baire category theoremBergman, Ivar January 2009 (has links)
In this thesis we give an exposition of the notion of category and the Baire category theorem as a set theoretical method for proving existence. The category method was introduced by René Baire to describe the functions that can be represented by a limit of a sequence of continuous real functions. Baire used the term functions of the first class to denote these functions. The usage of the Baire category theorem and the category method will be illustrated by some of its numerous applications in real and functional analysis. Since the usefulness, and generality, of the category method becomes fully apparent in Banach spaces, the applications provided have been restricted to these spaces. To some extent, basic concepts of metric topology will be revised, as the Baire category theorem is formulated and proved by these concepts. In addition to the Baire category theorem, we will give proof of equivalence between different versions of the theorem. Explicit examples, of first class functions will be presented, and we shall state a theorem, due to Baire, providing a necessary condition on the set of points of continuity for any function of the first class.
|
5 |
Baire category theoremBergman, Ivar January 2009 (has links)
<p>In this thesis we give an exposition of the notion of <em>category </em>and the <em>Baire category theorem </em>as a set theoretical method for proving existence. The category method was introduced by René Baire to describe the functions that can be represented by a limit of a sequence of continuous real functions. Baire used the term <em>functions of the first class </em>to denote these functions.</p><p>The usage of the Baire category theorem and the category method will be illustrated by some of its numerous applications in real and functional analysis. Since the usefulness, and generality, of the category method becomes fully apparent in Banach spaces, the applications provided have been restricted to these spaces.</p><p>To some extent, basic concepts of metric topology will be revised, as the Baire category theorem is formulated and proved by these concepts. In addition to the Baire category theorem, we will give proof of equivalence between different versions of the theorem.</p><p>Explicit examples, of first class functions will be presented, and we shall state a theorem, due to Baire, providing a necessary condition on the set of points of continuity for any function of the first class.</p><p> </p>
|
Page generated in 0.065 seconds