1 |
Continuously generated fixed-pointsBracho-Carpizo, F. January 1983 (has links)
No description available.
|
2 |
Rings of Continuous FunctionsConnell, Carolyn 08 1900 (has links)
The purpose of this paper is to examine properties of the ring C(X) of all complex or real-valued continuous functions on an arbitrary topological space X.
|
3 |
Peripherally Continuous Functions, Graph Maps and Connectivity MapsEvans, Bret Edgar 08 1900 (has links)
The purpose of this paper is to investigate some of the more basic properties of peripherally continuous functions, graph maps and connectivity maps.
|
4 |
Different Aspects Of Embedding Of Normed Spaces Of Analytic FunctionsBilokopytov, Ievgen 23 August 2013 (has links)
In the present work we develop a unified way of looking at normed spaces of analytic functions (NSAF's) and their embedding into the Frechet space of analytic functions on a general domain, by requiring only that the embedding map is bounded. This is a succinct definition of NSAF and derive from it a list of interesting properties. For example Proposition 4.4 describes the behavior of point evaluations and Proposition 4.6 part (i) gives a general sufficient condition for a NSAF to be a Banach space, which as far as we know, are new results. Also, Proposition 4.5, parts (ii) and (iii) of Proposition 4.6 and Proposition 4.7 are results, which are slight generalizations of fairly standard results, which show up elsewhere in a more specific setting. Some of the facts about NSAF's are stated and proven in a more general context. In particular, a significant part of the material is dedicated to the normed space of continuous functions on a metric space. On the other hand, we provide the necessary background on differential geometry and complex analysis, which further determine the peculiarities in the context of spaces of analytic functions. At the end we illustrate our results on two specific examples of NSAF's, namely the Bergman and the Bloch Spaces over a general domain in Cd. We give a new proof of the reflexivity of the Bergman Space Ap(G, μ) for the case p>1 and of the Schur property of A1(G, μ). We also give new proofs for the equivalences of some of the definitions of the Bloch functions.
|
5 |
Different Aspects Of Embedding Of Normed Spaces Of Analytic FunctionsBilokopytov, Ievgen 23 August 2013 (has links)
In the present work we develop a unified way of looking at normed spaces of analytic functions (NSAF's) and their embedding into the Frechet space of analytic functions on a general domain, by requiring only that the embedding map is bounded. This is a succinct definition of NSAF and derive from it a list of interesting properties. For example Proposition 4.4 describes the behavior of point evaluations and Proposition 4.6 part (i) gives a general sufficient condition for a NSAF to be a Banach space, which as far as we know, are new results. Also, Proposition 4.5, parts (ii) and (iii) of Proposition 4.6 and Proposition 4.7 are results, which are slight generalizations of fairly standard results, which show up elsewhere in a more specific setting. Some of the facts about NSAF's are stated and proven in a more general context. In particular, a significant part of the material is dedicated to the normed space of continuous functions on a metric space. On the other hand, we provide the necessary background on differential geometry and complex analysis, which further determine the peculiarities in the context of spaces of analytic functions. At the end we illustrate our results on two specific examples of NSAF's, namely the Bergman and the Bloch Spaces over a general domain in Cd. We give a new proof of the reflexivity of the Bergman Space Ap(G, μ) for the case p>1 and of the Schur property of A1(G, μ). We also give new proofs for the equivalences of some of the definitions of the Bloch functions.
|
6 |
On λ-closure spacesCaldas, Miguel, Ekici, Erdal, Jafari, Saeid 25 September 2017 (has links)
In this paper, we show that a pointwise λ -symmetric λ -isotonic λ -closure function is uniquely determined by the pairs of sets it separates. We then show that when the λ -closure function of the domain is λ -isotonic and the λ -closure function of the codomain is λ -isotonic and pointwise- λ -symmetric, functions which separate only those pairs of sets which are already separated are λ -continuous.
|
7 |
Continuous, Nowhere-Differentiable Functions with no Finite or Infinite One-Sided Derivative AnywhereLee, Jae S. (Jae Seung) 12 1900 (has links)
In this paper, we study continuous functions with no finite or infinite one-sided derivative anywhere. In 1925, A. S. Beskovitch published an example of such a function. Since then we call them Beskovitch functions. This construction is presented in chapter 2, The example was simple enough to clear the doubts about the existence of Besicovitch functions. In 1932, S. Saks showed that the set of Besicovitch functions is only a meager set in C[0,1]. Thus the Baire category method for showing the existence of Besicovitch functions cannot be directly applied. A. P. Morse in 1938 constructed Besicovitch functions. In 1984, Maly revived the Baire category method by finding a non-empty compact subspace of (C[0,1], || • ||) with respect to which the set of Morse-Besicovitch functions is comeager.
|
8 |
Absolute Continuity and the Integration of Bounded Set FunctionsAllen, John Houston 05 1900 (has links)
The first chapter gives basic definitions and theorems concerning set functions and set function integrals. The lemmas and theorems are presented without proof in this chapter. The second chapter deals with absolute continuity and Lipschitz condition. Particular emphasis is placed on the properties of max and min integrals. The third chapter deals with approximating absolutely continuous functions with bounded functions. It also deals with the existence of the integrals composed of various combinations of bounded functions and finitely additive functions. The concluding theorem states if the integral of the product of a bounded function and a non-negative finitely additive function exists, then the integral of the product of the bounded function with an absolutely continuous function exists over any element in a field of subsets of a set U.
|
9 |
Variações do Teorema de Banach Stone / Variations Banach- Stone TheoremSantos, Janaína Baldan 29 July 2016 (has links)
Este trabalho tem por objetivo estudar algumas variações do teorema de Banach- Stone. Elas podem ser encontradas no artigo Variations on the Banach- Stone Theorem, [14]. Além disso, apresentamos um resultado, provado por D. Amir em [1], que generaliza a versão clássica do Teorema de Banach- Stone. Consideramos os espaços C(K) e C(L), que representam os espaços de funções contínuas de K em R e de L em R respectivamente, onde K e L são espaços Hausdor compactos. O enunciado da versão clássica do teorema de Banach- Stone é a seguinte: \"Sejam K e L espaços Hausdor compactos. Então C(K) é isométrico a C(L) se e somente se, K e L são homeomorfos\". Apresentamos a primeira das variações que considera isomorfismo entre álgebras e foi feita por Gelfand e Kolmogoro em [15], no ano de 1939. A segunda versão apresentada trata de isomorfismo isométrico e a demonstração é originalmente devida a Arens e Kelley e é encontrada em [2]. Finalmente, estudamos o teorema provado por D. Amir e apresentado em [1]. Este teorema generaliza o teorema clássico de Banach- Stone e tem o seguinte enunciado: Se K e L são espaços Hausdor compactos e T é um isomorfismo linear de C(K) sobre C(L), com ||T||.||T^||< 2 então K e L são homeomorfos / This work aims to study some variations of the Banach- Stone theorem. They can be found in the article Variations on the Banach- Stone Theorem, [14]. In addition, we present a result, proved by D. Amir in [1], that generalizes the classic version of the Theorem Banach- Stone. We consider the spacesC(K) andC(L), representing the spaces of continuous functions from K into R and from L into R respectively, where K and L are compact Hausdor spaces. The wording of the classic version of the Banach- Stone theorem is as follows: \"Let K e L be compact Haudor spaces. Then C(K) isisometrictoC(L) if,andonlyif, K and L are homeomorphic\".Here the first of the variations that considers isomorphism between algebras and was made by Gelfand and Kolmogoro in [15], in 1939. The second version presented is about isometric isomorphisms and the demonstration is originally due to Arens and Kelley and it is found in [2]. Finally, we study the theorem proved by D. Amir and presented in [1]. This theorem generalizes the classical theorem Banach- Stone and states the following: \"Let K e L be compact Haudor spaces and let T be a linear isomorphism from C(K) into C(L), with ||T||.||T^||< 2. Then K and L are homeomorphic\".
|
10 |
Variações do Teorema de Banach Stone / Variations Banach- Stone TheoremJanaína Baldan Santos 29 July 2016 (has links)
Este trabalho tem por objetivo estudar algumas variações do teorema de Banach- Stone. Elas podem ser encontradas no artigo Variations on the Banach- Stone Theorem, [14]. Além disso, apresentamos um resultado, provado por D. Amir em [1], que generaliza a versão clássica do Teorema de Banach- Stone. Consideramos os espaços C(K) e C(L), que representam os espaços de funções contínuas de K em R e de L em R respectivamente, onde K e L são espaços Hausdor compactos. O enunciado da versão clássica do teorema de Banach- Stone é a seguinte: \"Sejam K e L espaços Hausdor compactos. Então C(K) é isométrico a C(L) se e somente se, K e L são homeomorfos\". Apresentamos a primeira das variações que considera isomorfismo entre álgebras e foi feita por Gelfand e Kolmogoro em [15], no ano de 1939. A segunda versão apresentada trata de isomorfismo isométrico e a demonstração é originalmente devida a Arens e Kelley e é encontrada em [2]. Finalmente, estudamos o teorema provado por D. Amir e apresentado em [1]. Este teorema generaliza o teorema clássico de Banach- Stone e tem o seguinte enunciado: Se K e L são espaços Hausdor compactos e T é um isomorfismo linear de C(K) sobre C(L), com ||T||.||T^||< 2 então K e L são homeomorfos / This work aims to study some variations of the Banach- Stone theorem. They can be found in the article Variations on the Banach- Stone Theorem, [14]. In addition, we present a result, proved by D. Amir in [1], that generalizes the classic version of the Theorem Banach- Stone. We consider the spacesC(K) andC(L), representing the spaces of continuous functions from K into R and from L into R respectively, where K and L are compact Hausdor spaces. The wording of the classic version of the Banach- Stone theorem is as follows: \"Let K e L be compact Haudor spaces. Then C(K) isisometrictoC(L) if,andonlyif, K and L are homeomorphic\".Here the first of the variations that considers isomorphism between algebras and was made by Gelfand and Kolmogoro in [15], in 1939. The second version presented is about isometric isomorphisms and the demonstration is originally due to Arens and Kelley and it is found in [2]. Finally, we study the theorem proved by D. Amir and presented in [1]. This theorem generalizes the classical theorem Banach- Stone and states the following: \"Let K e L be compact Haudor spaces and let T be a linear isomorphism from C(K) into C(L), with ||T||.||T^||< 2. Then K and L are homeomorphic\".
|
Page generated in 0.0831 seconds