Spelling suggestions: "subject:"balanced 3reduction"" "subject:"balanced coeduction""
1 |
The Search for a Reduced Order Controller: Comparison of Balanced Reduction TechniquesCamp, Katie A. E. 09 May 2001 (has links)
When designing a control for a physical system described by a PDE, it is often necessary to reduce the size of the controller for the PDE system. This is done so that real time control can be achieved. One approach often taken by engineers is to reduce the approximating finite-dimensional system using a balanced reduction method known as balanced truncation and then design a control for the lower order system. The unsettling idea about this method is that it involves discarding information and then designing a control. What if valuable physical information were lost that would have allowed a more effective control to be designed? This paper will explore an alternate balanced reduction method called LQG balancing. This approach allows for the designing of a control on the full order approximating system and then reducing the control. Along the way, the basic ideas of feedback control design will be discussed, including system balancing and model reduction. Following, there will be mention of the linear Klein-Gordon equation and the development of the one-dimensional finite element approximation of the PDE. Finally, simulations and numerical experiments are used to discuss the differences between the two balanced reduction methods. / Master of Science
|
2 |
Passivity preserving balanced reduction for the finite and infinite dimensional port Hamiltonian systems / Réductions équilibrées des systèmes hamiltonien à port en dimension finie et infinie en préservant la passivitéWu, Yongxin 07 December 2015 (has links)
Dans ce mémoire nous avons développé des méthodes de réduction des systèmes hamiltoniens à port en dimension finie et infinie qui préservent leur structure. Dans la première partie, nous avons défini une représentation des systèmes hamiltoniens à port avec contraintes sous la forme d'équations différentielles algébriques (DEA) de type de système descripteur. De cette forme nous avons déduit une réalisation équilibrée du système hamiltonien à port exprimée sous forme de système descripteur contenant les mêmes systèmes d'équations de contrainte. Dans la deuxième partie, nous avons défini une classe de problèmes de commande LQG tels que le contrôleur dynamique LQG est passif et admet une réalisation hamiltonien à port. Deux méthodes de synthèse de commande passive LQG sont proposées et une de ces méthodes LQG nous a permis de définir une réalisation équilibrée LQG. Puis nous avons appliqué la méthode de contrainte de l'effort pour réduire le système hamiltonien à port et obtenir une commande LQG passive d'ordre réduit. Ce contrôleur LQG admettant une réalisation hamiltonienne, la structure hamiltonienne est préservée pour le système en boucle fermée par interconnexion de systèmes hamiltoniens à port. Dans la troisième partie, nous avons généralisé les résultats précédents aux systèmes hamiltoniens à ports linéaires de dimension infinie. Pour cela nous avons considéré une classe de systèmes hamiltoniens à ports de dimension infinie dont l'opérateur d'entrée est borné et un problème de commande LQG passif. Sous des conditions de nucléarité de l'opérateur de Hankel lié au problème LQG, nous définissons une réalisation équilibrée LQG passive du système et une approximation en dimension finie. Le contrôleur LQG passif d'ordre réduit obtenu par cette approximation admet une réalisation hamiltonienne à port et par conséquent la structure hamiltonienne et la passivité sont préservées en boucle fermée / In this thesis we have developed different structure preserving reduction methods for finite and infinite dimensional port Hamiltonian systems by using a balanced model reduction approach. In the first part we have defined a descriptor representation of port Hamiltonian systems with constraints. The balanced realization of the descriptor system has been used for reducing the port Hamiltonian descriptor system and conserving explicitly the constraint equations. In the second part, conditions have been derived on the weighting matrices of the LQG control problem such that the dynamical LQG controller is passive and has a port Hamiltonian realization. Two passive LQG control design methods have been suggested and one of them allows us to define a LQG balanced realization. Based on this realization, the effort constraint method has been used to reduce the LQG balanced port Hamiltonian system and obtain a reduced order passive LQG controller. In this way the closed-loop system is derived from the interconnection of 2 port Hamiltonian systems, hence the Hamiltonian structure has been preserved. In the third part, the proceeding results have been extended to a class of infinite dimensional port Hamiltonian system with bounded input operator. A passive LQG control design method for infinite dimensional port Hamiltonian system has been derived as by Control by Interconnection (CbI). Based on the balanced realization associated with this passive LQG control design, a finite dimensional approximation has been achieved and a reduced order passive LQG controller has been derived. As a consequence, the system in closed-loop with this reduced order LQG controller again admits a port Hamiltonian structure and satisfies the passivity
|
Page generated in 0.0605 seconds